
INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Área Departamental de Engenharia de
Eletrónica e Telecomunicações e de Computadores

Examination Timetabling Automation using
Hybrid Meta-heuristics

Miguel de Brito e Nunes
(Licenciado em Engenharia Informática e de Computadores)

Trabalho de projeto realizado para obtenção do grau
de Mestre em Engenharia Informática e de Computadores

Orientadores:
Doutor Artur Jorge Ferreira
Mestre Nuno Miguel da Costa de Sousa Leite

Júri:
Presidente: Mestre Pedro Alexandre Seia Cunha Ribeiro Pereira
Vogais:

Doutor Artur Jorge Ferreira
Doutor Luís Filipe Graça Morgado

Novembro, 2015

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Área Departamental de Engenharia de
Eletrónica e Telecomunicações e de Computadores

Examination Timetabling Automation using
Hybrid Meta-heuristics

Miguel de Brito e Nunes
(Licenciado em Engenharia Informática e de Computadores)

Trabalho de projeto realizado para obtenção do grau
de Mestre em Engenharia Informática e de Computadores

Orientadores:
Doutor Artur Jorge Ferreira
Mestre Nuno Miguel da Costa de Sousa Leite

Júri:
Presidente: Mestre Pedro Alexandre Seia Cunha Ribeiro Pereira
Vogais:

Doutor Artur Jorge Ferreira
Doutor Luís Filipe Graça Morgado

Novembro, 2015

Acknowledgments

I would like to express my gratitude to my supervisors Artur Ferreira and Nuno Leite, dur-
ing the entire project development. If it wasn’t for them, the development of this project
wouldn’t be possible. Their assistance and motivation really made me to continue and to
work hard on this project.

I would like to thank my best friends João Vaz, Daniel Albuquerque, André Ferreira, Pe-
dro Miguel, André Jerónimo, my brothers Pedro Nunes and João Tiago, my parents Mariana
and Paulo, and my girlfriend Ana Sofia, for always being there to support me on the hardest
moments of my life. Their help on my personal life issues was crucial while developing this
project.

Last, but not the least, I would like to thank Instituto Superior de Engenharia de Lisboa,
for giving me support and knowledge in the Computing Engineering subject, for the past six
years.

Resumo

Nos últimos anos, o tema da geração automática de horários tem sido alvo de muito estudo.
Em muitas instituições, a elaboração de horários ainda é feita manualmente, constituindo-
se uma tarefa demorada e penosa para instâncias de grande dimensão. Outro problema
recorrente na abordagem manual é a existência de falhas dada a dificuldade do processo de
verificação, e também a qualidade final do horário produzido. Se este fosse criado por com-
putador, o horário seria válido e seriam de esperar horários com qualidade superior dada a
capacidade do computador para pesquisar o espaço de soluções.

A elaboração de horários não é uma tarefa fácil, mesmo para uma máquina. Por exemplo,
horários escolares necessitam de seguir certas regras para que seja possível a criação de
um horário válido. Mas como o espaço de estados (soluções) válidas é tão vasto, é imprat-
icável criar um algoritmo que faça a enumeração completa de soluções a fim de escolher a
melhor solução possível. Por outro lado, a utilização de algoritmos que realizam a enumer-
ação implícita de soluções (por exemplo, branch and bound), não é viável para problemas
de grande dimensão. A utilização de heurísticas que percorrem de uma forma guiada o es-
paço de estados, conseguindo assim uma solução razoável em tempo útil, constituem uma
abordagem adequada para este tipo de problemas.

Um dos objetivos do projeto consiste na criação duma abordagem que siga as regras do In-
ternational Timetabling Competition (ITC) 2007 incidindo na criação de horários de exames
em universidades (Examination timetabling track). Este projeto utiliza uma abordagem de
heurísticas híbridas. Isto significa que utiliza múltiplas heurísticas para obter a melhor
solução possível. Utiliza uma variação da heurística de Graph Coloring para obter uma
solução válida e as meta-heurísticas Simulated Annealing e Hill Climbing para melhorar
a solução obtida.

Os resultados finais são satisfatórios, pois em algumas instâncias os resultados são mel-
hores do que alguns dos cinco finalistas do concurso ITC 2007.

Palavras Chave

Heurísticas; Meta-heurísticas; International Timetabling Competition 2007; Horários; Horários
de exames; Coloração de Grafos; Solidificação Simulada;

Abstract

In the last few years the automatic creation of timetables is being a well-studied subject. In
many institutions, the elaboration of timetables is still manual, thus being a time-consuming
and difficulty task for large instances. Another current problem in the manual approach is
the existence of failures given the difficulty in the process verification, and so the quality
of the produced timetable. If this timetable had been created by a computer, the timetable
would be valid and timetables with better quality should be obtained, given the computer’s
capacity to search the solution space.

It is not easy to elaborate timetables, even for a machine. For example, scholar/univer-
sity timetables need to follow certain type of constraints or rules for them to be considered
valid. But since the solution space is so vast, it is highly unlikely to create an algorithm
that completely enumerates the solutions in order to choose the best solution possible, con-
sidering the problem structure. The use of algorithms that perform implicit enumeration
solutions (for example, an branch bound), is not feasible for large problems. Hence the use
of heuristics which navigate through the solution space in a guided way, obtaining then a
reasonable solution in acceptable time.

One main objective of this project consists in creating an approach that follows the In-
ternational Timetabling Competition (ITC) 2007 rules, focusing on creating examination
timetables. This project will use a hybrid approach. This means it will use an approach that
includes multiple heuristics in order to find the best possible solution. This approach uses
a variant of the Graph Coloring heuristic to find an initial valid solution, and the meta-
heuristics Simulated Annealing and Hill Climbing to improve that solution.

The final results are satisfactory, as in some instances the obtained results beat the results
of some of the five finalists from ITC 2007.

Keywords

Heuristics; Meta-heuristics; International Timetabling Competition 2007; Timetable; Exam-
ination Timetabling; Graph Coloring; Simulated Annealing;

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Figures . xiii

List of Tables . xv

List of Code Listings . xvii

List of Acronyms . xix

1 Introduction . 1
1.1 Educational Timetabling Problems . 1
1.2 Objectives . 2
1.3 Document Organization . 2

2 State-of-the-Art . 5
2.1 Timetabling Problem . 5
2.2 Existing Approaches . 6

2.2.1 Exact methods . 7
Constraint-Programming Based Technique . 7
Integer Programming . 7

2.2.2 Graph Coloring Based Techniques . 8
Graph Coloring Problem . 8

2.2.3 Meta-heuristics . 8
Single-solution meta-heuristics . 8
Population-based meta-heuristics . 8

2.2.4 ITC2007 Examination timetabling problem: some approaches 9
2.2.5 Other methods - further approaches . 10

xi

3 Software Architecture . 15
3.1 Data Layer . 15
3.2 Data Access Layer . 15
3.3 Business Layer . 17
3.4 Tools Layer . 19
3.5 Heuristics Layer . 20
3.6 Presentation Layer . 20

4 Loader and Solution Initialization . 21
4.1 Loader Module . 21

4.1.1 Analysis of benchmark data . 21
4.1.2 Implementation . 21

4.2 Graph Coloring . 23
4.2.1 Implementation . 23
4.2.2 Stochasticity . 25

4.3 Solution Initialization Results . 25

5 Proposed Approach: Local Search . 29
5.1 Simulated Annealing . 29

5.1.1 Implementation . 30
5.1.2 Variable Rate Computation . 32

5.2 Hill Climbing . 34
5.2.1 Implementation . 34

5.3 Neighborhood Operators . 35
5.3.1 Implementation . 37
5.3.2 Statistics . 37
5.3.3 Neighborhood Operators Effect . 39

5.4 Fitness Computation . 40
5.4.1 Implementation . 40

6 Experimental Results . 43

7 Conclusions . 47
7.1 Future Work . 47

References . 49

xii

List of Figures

2.1 Optimization methods: taxonomy and organization (adapted from [1]). 6

3.1 Overview of the subsystems that compose the system software architecture. . . . 16
3.2 Overview of the DAL and the present entity types and repositories. 17
3.3 Overview of the BL and its main classes. 18

4.1 Specification of Loader and LoaderTimetable tools . 23
4.2 Graph Coloring and Feasibility Tester . 26

5.1 Simulated Annealing classes . 31
5.2 Simulated Annealing results . 34
5.3 Hill Climbing classes . 35
5.4 Neighborhood selection and operators . 38
5.5 Accepted and rejected neighbors for each examination in the Simulated

Annealing. 39

xiii

xiv

List of Tables

2.1 Timeline of existing approaches . 14

4.1 Specifications of the 12 datasets of the ITC 2007 examination timetabling
problem. 22

4.2 Some of the Graph Coloring’s performance features. 27

5.1 Improvement factor (percentage) between using five and six neighbor operators. 40

6.1 Obtained results for the proposed SA hybrid algorithm. “–” indicates that a
feasible solution could not be obtained. 44

6.2 Comparison of the fitness results of the current approach with the previous
approach. The best solutions are in boldface. “–” indicates that a feasible
solution could not be obtained. 44

6.3 Comparison of the proposed approach with the ITC 2007 finalists. The
comparison is made between the average values of each approach. The best
solutions are in boldface. “–” indicates that a feasible solution could not be
obtained. 45

6.4 Comparison of the proposed approach with state-of-the-art approaches. The
comparison is made between the average values of each approach. The best
solutions are in boldface. “–” indicates that a feasible solution could not be
obtained, or the following datasets were not tested. 45

6.5 Results with different time constraints. The best solutions are in boldface. “–”
indicates that a feasible solution could not be obtained. 46

xv

xvi

List of Algorithms

1 LoaderTimetabling’s Load method. 23
2 Graph Coloring algorithm. 27
3 Simulated Annealing method. 32
4 Rate computing. 33

xvii

xviii

List of Acronyms

AI Artificial Intelligence

BB Branch and Bound

BL Business Layer

CPBT Constraint Programming Based Technique

CRUD Create, Read, Update and Delete

DAL Data Access Layer

DL Data Layer

GA Genetic Algorithm

GC Graph Coloring

GD Great Deluge

GRASP Greedy Randomized Adaptive Search Procedure

HC Hill Climbing

HL Heuristics Layer

IFS Iterative Forward Search

ILP Integer Linear Problem

IP Integer Programming

ITC 2007 International Timetabling Competition 2007

MILP Mixed-Integer Linear Programming

PL Presentation Layer

SA Simulated Annealing

TL Tools Layer

TS Tabu Search

xix

xx

1

Introduction

Many people believe that Artificial Intelligence (AI) techniques aim to imitate human be-
havior and the way humans think and act. Even though people are not wrong, AI was also
created to solve problems that humans are unable to solve, or to solve them in a shorter
time window, with a better solution. For hard problems like timetabling, job shop, traffic
routing, clustering, among others, humans may take days to find a solution, or may not find
a solution that fits their needs. Optimization algorithms, that is, methods that seek to min-
imize or to maximize some criterion, may deliver a very good solution in minutes, hours,
or days, depending on how much time the human is willing to use in order to get a proper
solution.

A concrete example of this type of problems is the creation of timetables. Timetables can
be used for educational purposes, in sports scheduling, or in transportation timetabling,
among other applications. The timetabling problem consists in scheduling a set of events
(e.g., exams, people, trains) to a specified set of time slots, while respecting a predefined
set of rules.

1.1 Educational Timetabling Problems

The educational timetabling problems involves the scheduling of classes, lectures or exams
on a school or university in a predefined set of time slots while satisfying a set of rules or
constraints. Examples of rules are: a student can’t be present in two classes at the same
time, a student can’t have two exams on the same day or an exam must be scheduled before
another.

Depending on the institution type and if we’re scheduling classes/lectures or exams, the
timetabling problem is divided into three main types:

• Examination timetabling – consists on scheduling university course exams, while avoid-
ing the overlap of exams containing students from the same course and spreading the
exams as much as possible in the timetable.

• Course timetabling – consists on scheduling lectures considering the multiple university
courses, avoiding the overlap of lectures with common students.

1

• School timetabling – consists on scheduling all classes in a school, avoiding the need of
students being present at multiple classes at the same time.

In this project, the main focus is the examination timetabling problem.

The type of rules/constraints to satisfy depend on the particular timetabling problem specifi-
cations. The constraints are generally divided into two constraint categories: hard and soft.
Hard constraints are a set of rules which must be followed in order to get a feasible solution.
On the other hand, soft constraints represent the views of the different interested players
(e.g., institution, students, nurses, train operators) on the resulting timetable. The satisfac-
tion of this type of constraints is not mandatory as is for the case of the hard constraints. In
the timetabling problem, the goal is usually to optimize a function with a weighted combi-
nation of the different soft constraints, while satisfying the set of hard constraints.

1.2 Objectives

This project’s main objective is the production of a prototype application which serves as
an examination timetable generator tool. The problem at hand focus on the specifications
introduced in the International Timetabling Competition 2007 (ITC 2007), First track, which
includes 12 benchmark instances. In the ITC 2007 specification, the examination timetabling
problem considers a set of periods, room assignment, and the existence of constraints anal-
ogous to the ones present in real instances.

The application’s requirements are the following:

• Automated generation of examination timetables, considering the ITC 2007 specifica-
tions (mandatory).

• Validation (correction and quality) of a timetable provided by the user (mandatory).
• Graphical User Interface to allow the user to edit generated solutions and to optimize

user’s edited solutions (optional).

This project is divided into two main phases. The first phase consists on studying some tech-
niques and solutions for this problem emphasizing meta-heuristics like: Genetic Algorithm
(GA) [2], Simulated Annealing (SA) [3], Tabu Search (TS) [4], and some of its hybridizations.
The second phase consists in the development of the selected algorithms and promising hy-
bridizations, and to test them using the ITC 2007 data. A performance comparison between
the proposed algorithms and the state-of-the-art algorithms will be made.

1.3 Document Organization

The remainder of this report is organized as follows. Chapter 2, addresses the timetabling
problem focusing on examination timetabling and existing approaches applied to the ITC
2007 benchmark data. This chapter includes a survey of the most important paradigms, al-
gorithmic strategies to tackle the timetabling problem, and the methods of the five ITC 2007
finalists are summarized. In Chapter 3 the system architecture is explained, together with
the created layers. Chapter 4 explains how the solution is created and initialized. Chapter 5
addresses the proposed local search meta-heuristics, along with their implementations. In

2

Chapter 6 compares the final results with the five ITC 2007 finalists and state-of-the-art ap-
proaches. Finally, in Chapter 7 we share the conclusions taken after developing the project,
finishing with the possible future work.

3

4

2

State-of-the-Art

In this chapter, we review the state-of-the-art of the problem at hand. We start by describing
why timetabling is a rather complex problem, some possible approaches to solve it and some
of the existing solutions, specifically for the ITC 2007 benchmarks.

2.1 Timetabling Problem

When solving timetabling problems, it is possible to generate one of multiple types of so-
lutions which are: feasible, non feasible, optimal or sub-optimal. A feasible solution solves
all the mandatory constraints, unlike non feasible solutions. An optimal solution is the best
possible feasible solution given the problem constraints. A problem may have multiple opti-
mal solutions. Lastly, sub-optimal solutions are feasible solutions with sub-optimal values.

Timetabling automation is a subject that has been a target of research for about 50 years.
The timetabling problem may be formulated as a search or an optimization problem [5]. As
a search problem, the goal consists on finding a feasible solution that satisfies all the hard
constraints, while ignoring the soft constraints. By posing the timetabling problem as an op-
timization problem, one seeks to minimize the violations of soft constraints while satisfying
the hard constraints. Typically, the optimization is done after the use of a search procedure
to find an initial feasible solution.

The basic examination timetabling problem, where only the clash hard constraint is ob-
served, reduces to the well-known Graph Coloring (GC) [6] problem. The clash hard con-
straint specifies that no conflicting exams should be scheduled at the same time slot. Decid-
ing whether a solution exists or not in the GC problem, is a NP-complete problem [7] [8].
Considering the GC as an optimization problem, it is proven that the task of finding the
optimal solution is also a NP-Hard problem [7] [8]. GC problems are further explained in
Section 2.2

5

2.2 Existing Approaches

Figure 2.1 depicts a taxonomy for the known optimization methods. These methods are di-
vided into Exact methods and Approximate methods.

Timetabling solution approaches are usually divided into the following categories [8]: ex-
act algorithms (Branch-and-Bound, Constraint Programming), graph based sequential tech-
niques, Single-solution based meta-heuristics (Tabu Search, Simulated Annealing, Great
Deluge), population based algorithms (Evolutionary Algorithms, Memetic algorithms, Ant
Colony algorithms, Artificial immune algorithms), Multi-criteria techniques, Hyper-heuristics,
and Decomposition/clustering techniques. Hybrid algorithms, which combine features of
several algorithms, comprise the state-of-the-art. Due to its complexity, approaching the ex-
amination timetabling problem using exact method approaches, can only be done for small
size instances. Real problem instances found in practice, are usually of large size, making
the use of exact methods impracticable. Heuristic solution algorithms have been usually
employed to solve this problem.

Real problem instances are usually solved by algorithms which use both heuristics and meta-
heuristics. Heuristic algorithms are problem-dependent, meaning that these are adapted to
a specific problem in which one can take advantage of its details. Heuristics are usually ap-
plied to obtain a solution, which may be feasible or not. For instance, GC heuristics are used
to obtain solutions for a given timetable problem instance. Usually only the hard constraints
are considered in this phase. Meta-heuristics, on the other hand, are problem-independent,
and are used to optimize any type of problem. In these, one usually considers both hard and

18 COMMON CONCEPTS FOR METAHEURISTICS

Optimization methods

Exact methods Approximate methods

Heuristic algorithms Approximation
 algorithms

Problem-specific
 heuristics

Metaheuristics

Single-solution based
 metaheuristics

Population-based
 metaheuristics

Branch and X Constraint
programming

 Dynamic
programming

Branch and
 bound

Branch and
 cut

Branch and
 price

A*, IDA*

FIGURE 1.7 Classical optimization methods.

integration:

f ′
robust(x) =

∑N
i=1 f (x + δi)

N

Robust optimization has to find a trade-off between the quality of solutions and their

robustness in terms of decision variable disturbance. This problem may be formulated

as a multiobjective optimization problem (see Chapter 4) [415]. Unlike optimiza-

tion under uncertainty, the objective function in robust optimization is considered as

deterministic.

The introduced different variants of optimization models are not exclusive. For

instance, many practical optimization problems include uncertainty as well as robust-

ness and/or multiperiodicity. Thus, uncertainty, robustness, and dynamic issues must

be jointly considered to solve this class of problems.

1.3 OPTIMIZATION METHODS

Following the complexity of the problem, it may be solved by an exact method or an

approximate method (Fig. 1.7). Exact methods16 obtain optimal solutions and guaran-

tee their optimality. For NP-complete problems, exact algorithms are nonpolynomial-

time algorithms (unless P = NP). Approximate (or heuristic) methods generate high-

quality solutions in a reasonable time for practical use, but there is no guarantee of

finding a global optimal solution.

16In the artificial intelligence community, those algorithms are also named complete algorithms.

Figure 2.1: Optimization methods: taxonomy and organization (adapted from [1]).

6

soft requirements.

Most of the existing meta-heuristic algorithms belong to one of the following three cat-
egories: One-Stage algorithms, Two-Stage algorithms and algorithms that allow relax-
ations [9]. The One-Stage algorithm is applied to get a solution, whose goal is to satisfy
both hard and soft constraints, at the same time. The Two-Stage algorithms are the most
frequent types of approaches. This category is divided in two phases: the first phase consists
in not considering the soft constraints and focusing on solving hard constraints to obtain a
feasible solution; the second phase is an attempt to find the best solution, trying to solve
the largest number of soft constraints as possible, given the solution of the first phase. Al-
gorithms that allow relaxation can weaken some constraints in order to solve the relaxed
problem, while considering the satisfaction of the original constraints that were weakened,
on a later stage of the algorithm.

2.2.1 Exact methods

Approximation algorithms like heuristics and meta-heuristics proceed to enumerate par-
tially the search space and, for that reason, they can’t guarantee that the optimal solution
is found. Exact approaches perform an implicit enumeration of the search space and thus
guarantee that the encountered solution is optimal. A negative aspect is the time taken to
find the solution. If the decision problem is very difficult (e.g., NP-Complete), in practical
scenarios, given the large size problem instances, it may not be possible to use this approach
due to the prohibitive time.

Constraint-Programming Based Technique

The Constraint Programming Based Technique (CPBT) [10] allows direct programming with
constraints which gives ease and flexibility in solving problems like timetabling. Two impor-
tant features of this technique are the use of backtracking and logical variables. Constraint
programming is different from other types of programming, in the sense that it specifies
the steps that need to be executed, but in constraint programming only the properties (hard
constraints) of the solution, or the properties that should not be in the solution, are specified
[8].

Integer Programming

The Integer Programming (IP) [11] is a mathematical programming technique in which the
optimization problem to be solved must be formulated as an Integer Problem. If both the ob-
jective function and the constraints are linear, and all problem variables are integer valued,
then the IP problem is termed Integer Linear Problem (ILP). In the presence of both integer
and continuous variables, then the problem is called Mixed-Integer Linear Programming
(MILP). Schaerf [5] surveys some approaches using the MILP technique to school, course,
and examination timetabling.

7

2.2.2 Graph Coloring Based Techniques

As mentioned previously, timetabling problems can be reduced to a GC problem. Exploiting
the connection between these two problems, several authors used two-phase algorithms in
which GC heuristics are applied in the first phase, to obtain an initial feasible solution.

Graph Coloring Problem

The GC problem consists in assigning colors to an element type of a graph which must fol-
low certain constraints. The simplest sub-type is the vertex coloring, which the main goal
is to, given a number of vertices and edges, color the vertices so that no adjacent vertices
have the same color. In this case, the goal is to find a solution with the lowest number of
colors as possible.

The examination timetabling problem can be transformed into a GC problem as follows.
The exams corresponds to vertices and there exists an edge connecting each pair of con-
flicting exams (exams that have students in common). With this mapping only the clash hard
constraints are taken into consideration. Thus, soft constraints are ignored [8].

Given the mapping between the GC problem and the examination timetabling problem, GC
heuristics like Saturation Degree Ordering are very commonly used to get the initial solu-
tions. Others like First Fit and other Degree Based Ordering techniques (Largest Degree Or-
dering, Incidence Degree Ordering) are also heuristic techniques for coloring graphs [12].

2.2.3 Meta-heuristics

Meta-heuristics, as mentioned above, usually provide solutions for optimization problems.
In timetabling problems, meta-heuristic algorithms are used to optimize the feasible so-
lutions provided by heuristics, such as the GC heuristics. Meta-heuristics are divided in
two main sub-types, which are Single-solution meta-heuristics and Population-based meta-
heuristics [1].

Single-solution meta-heuristics

Single-solution meta-heuristics main goal is to modify and to optimize one single solution,
maintaining the search focused on local regions. This type of meta-heuristic is therefore
exploitation oriented. Some examples of this type are SA, Variable-Neighborhood Search,
TS, and Guided Local Search [1].

Population-based meta-heuristics

Population-based meta-heuristics main goal is to modify and to optimize multiple candidate
solutions, maintaining the search focused in the whole space. This type of meta-heuristic is
therefore exploitation oriented. Some examples of this type are Particle Swarm, Evolution-
ary Algorithms, and Genetic Algorithms [1].

8

2.2.4 ITC2007 Examination timetabling problem: some approaches

In this section, the five ITC 2007 - Examination timetabling track - finalists approaches are
described. This timetabling problem comprises 12 instances of different degree of complex-
ity. Through the available website, competitors could submit their solutions for the given
benchmark instances. The submitted solutions were evaluated as follows. First, it is checked
if the solution is feasible and a so-called distance to the feasibility is computed. If it is feasi-
ble, the solution is further evaluated based on the fitness function, which measures the soft
constraints total penalty. Then, competitors’ solutions are ranked based on the distance to
feasibility and solution’s fitness value. The method achieving the lower distance to feasibil-
ity value is the winner. In the case of a tie, the competitor’s solution with the lowest fitness
value wins. A solution is considered feasible if the value of distance to feasibility is zero.

The set of hard constraints is the following:

• no student must be elected to be present in more than one exam at the same time;
• the number of students in a class must not exceed the room’s capacity;
• exam’s length must not surpass the length of the assigned time slot;
• exams ordering hard constraints must be followed; e.g., Exam1 must be scheduled after

Exam2;
• room assignments hard constraints must be followed; e.g., Exam1 must be scheduled in

Room1.

It is also necessary to compute the fitness value of the solution which is computed by the
average sum of the soft constraints penalty. The soft constraints are listed below:

• two exams in a row – a student should not be assigned to be in two adjacent exams in
the same day;

• two exams in a day – a student should not be assigned to be in two non adjacent exams
in the same day;

• period spread – the number of times a student is assigned to be in two exams that are N
time slots apart should be minimized;

• mixed durations – the number of exams with different durations that occur in the same
room and period should be minimized;

• larger exams constraints - reduce the number of large exams that occur later in the
timetable;

• room penalty – avoid assigning exams to rooms with penalty;
• period penalty – avoid assigning exams to periods with penalty.

in order to get a detailed description on how to compute the values of fitness and distance
to feasibility based on the weight of each constraint, please check the ITC 2007 website [13].

We now review the ITC 2007’s five winners approaches. The winners list of the ITC 2007
competition is as follows:

• 1st Place - Tomáš Müller.
• 2nd Place - Christos Gogos.
• 3rd Place - Mitsunori Atsuta, Koji Nonobe, and Toshihide Ibaraki.
• 4th Place - Geoffrey De Smet.
• 5th Place - Nelishia Pillay.

9

We now briefly describe these approaches.

Tomáš Müller’s approach [14] was actually applied to solve the three problems established
by the ITC 2007 competition. He was able to win two of them and to be finalist on the third.
For solving the problems, he opted for an hybrid approach, organized in a two-phase al-
gorithm. In the first phase, Tomáš used the Iterative Forward Search (IFS) algorithm [15]
to obtain feasible solutions and Conflict-based Statistics [16] to prevent IFS from looping.
The second phase consists in using multiple optimization algorithms. These algorithms are
applied in this order: Hill Climbing (HC) [17], Great Deluge (GD) [18], and optionally SA [3].

Gogos was able to reach second place in the Examination Timetabling track. Gogos’ ap-
proach [19], like Müller’s, is a two-phase approach. The first phase starts with a pre-
processing stage, in which the hidden dependencies between exams are checked in order
to speed up the optimization phase. After the pre-processing stage, a construction stage
takes place, using a meta-heuristic called Greedy Randomized Adaptive Search Procedure
(GRASP). In the second phase, optimization methods are applied in this order: HC, SA, IP
(the Branch and Bound procedure), finishing with the so-called Shaking Stage, which is ap-
plied only on certain conditions. The Shaking Stage shakes the current solution creating an
equally good solution, which is given to the SA. The objective of this stage to force SA to
restart with more promising solutions and to generate better results.

Atsuta et al. ended up in third place on the Examination Timetabling track and won third and
second places on the other tracks, with the same approach for all of them. Their approach
[20] consists on applying a constraint satisfaction problem solver adopting an hybridization
of TS and Iterated Local Search.

Geoffrey De Smet’s approach [4] differs from all others because he decided not to use a
known problem-specific heuristic to obtain a feasible solution, but instead used what is
called the Drool’s rule engine, named drools-solver [21]. The drools-solver is a combina-
tion of optimization heuristics and meta-heuristics with very efficient score calculation. A
solution’s score is the sum of the weight of the constraints being broken. After obtaining a
feasible solution, Geoffrey opted to use a local search algorithm, namely TS, to improve the
solutions obtained using the drools-solver.

Nelishia Pillay proposed a two-phase algorithm variant, using a Developmental Approach
based on Cell Biology [22], whose goal consists in forming a well-developed organism by the
process of creating a cell, proceeding with cell division, cell interaction, and cell migration.
In this approach, each cell represents a time slot. The first phase represents the process of
creating the first cell, cell division, and cell interaction. The second phase represents the
cell migration.

2.2.5 Other methods - further approaches

In this subsection, we describe other approaches to the ITC 2007 problem, which were pro-
posed after the 2007 contest.

Abdullah et al.’s 2009 approach [23] consists on using an hybridization of an electromagnetic-

10

like mechanism and the GD algorithm. In this approach, the electromagnetism-like mecha-
nism starts with a randomly generated population of timetables. Electromagnetic-like mech-
anism is a meta-heuristic algorithm using an attraction-repulsion technique [24] to move the
solutions to the region of optimal solutions.

McCollum et al.’s 2009 two phase approach [25] applies an adaptive ordering heuristic
from [26], proceeding with an extended version of GD. As the author stated, this approach
is robust and generic considering the obtained results on the benchmark datasets from ITC
2007.

Alzaqebah et al.’s 2011 two phase approach [27] starts by using a GC heuristic (largest de-
gree ordering) to generate the initial solution. It ends by applying the Artificial Bee Colony
search algorithm to optimize the solution.

Turabieh and Abdullah’s 2011 approach [28] utilizes a two phase algorithm. The first phase
consists on constructing initial solutions by using an hybridization of GC heuristics (least
saturation degree, largest degree first and largest enrollment). The second phase utilizes
an hybridization of electromagnetic-like mechanism and GD algorithm, just like in [23].

Turabieh and Abdullah proposed another approach in 2012 [2] that utilizes a Tabu-based
memetic algorithm which consists on an hybridization of a GA with TS algorithms. The au-
thors claim that this approach produces some of the best results, when tested on the ITC
2007’s datasets.

Demeester et al. in 2012 created an hyper-heuristic approach [29]. The heuristics that
were considered are ’improved or equal’, equivalent to hill climbing that accepts equally
good solutions, SA, GD, and an adapted version of the late acceptance strategy [30]. These
heuristics are used on already-created initial solutions. Initial solutions are constructed us-
ing an algorithm which does not guarantee the feasibility of the solution.

McCollum et al.’s 2012 approach [31] introduce an IP formulation to the ITC 2007 instance,
and also a solver using the CPLEX software.

Sabar et al.’s utilized a GC hyper-heuristic on its approach in 2012 [32]. This hyper-heuristic
is composed of four hybridizations of these four methods: last degree, saturation degree,
largest colored degree and largest enrollment. This approach compete with the winners’
approaches from ITC 2007, considering the benchmark results.

Sabar et al.’s 2012 approach [33] utilizes a two phase algorithm. It starts by using an hy-
bridization of GC heuristics to obtain feasible solutions and a variant of honey-bee algorithm
for optimization. The hybridization is composed of least saturation degree, largest degree
first, and largest enrollment first, applied in this order.

Abdullah and Alzaqebah opted to create an hybridization approach in 2013 [34], mixing
the use of a modified bees algorithm with local search algorithms (i.e. SA and late accep-
tance HC).

11

Salwani Abdullah and Malek Alzaqebah in 2014 constructed an approach [35] that utilizes
an hybridization of a modified artificial bee colony with a local search algorithm (i.e. late
acceptance HC).

Burke et al.’s 2014 approach [36] uses an hyper-heuristic with hybridization of low level
heuristics (neighbor operations) to improve the solutions. The low level heuristics are move
exam, swap exam, kempe chain move and swap times lot. After applying this hyper-heuristic
with the hybridizations, the hybridization with the best results was tested with multiple
exam ordering methods, applying another hyper-heuristic with hybridizations. The heuris-
tics applied are largest degree, largest weighted degree, saturation degree, largest penalty,
and random ordering.

Hmer and Mouhoub’s approach [37] uses a multi-phase hybridization of meta-heuristics.
Works like the two phase algorithm but includes a pre-processing phase before the construc-
tion phase. This pre-processing phase is divided in two phases: the propagation of ordering
constraints and implicit constraints discovery. The construction phase utilizes a variant of
TS. The optimization phase uses hybridization of HC, SA, and an extended version of the GD
algorithm.

Hamilton-Bryce et al. [38] in 2014 opted to use a non-stochastic method on their approach
[38], when choosing examinations in the neighborhood searching process on the optimiza-
tion phase. Instead, it uses a technique to make an intelligent selection of examinations us-
ing information gathered in the construction phase. This approach is divided into 3 phases.
The first phase uses a Squeaky Wheel constructor which generates multiple initial timeta-
bles and a weighted list for each timetable. Only the best timetable and its weighted list is
passed to the second phase. The second phase is the Directed Selection Optimization phase
which uses the weighted list created in the construction phase to influence the selection of
examinations for the neighbor search process. Only the best timetable is passed onto the
next phase. The third phase is the Highest Soft Constraint Optimization phase, which is sim-
ilar to the previous phase but a weighted list of values is calculated, based on the solution’s
individual soft constraints penalty.

Rahman et al.’s approach [39] is a constructive one. This divides examinations in sets called
easy sets and hard sets. Easy sets contain the examinations that are easy to schedule on a
timetable and on the contrary, hard sets contain the ones that are hard to schedule and so
are identified as the ones creating infeasibility. This allows to use the examinations present
on the hard sets first on future construction attempts. There’s also a sub-set within the easy
set, called Boundary Set which helps on the examinations’ ordering and shuffling. Initial
examinations’ ordering are accomplished by using GC heuristics like largest degree and
saturation degree heuristics.

Rahman et al.’s approach [40] utilizes adaptive linear combinations of graph coloring heuris-
tics (largest degree and saturation degree) with an heuristic modifier. These adaptive linear
combinations allow the attribution of difficulty scores to examinations depending on how
hard their scheduling is. The ones with higher score, and so harder to schedule, are sched-
uled using two strategies: using single or multiple heuristics and with or without heuris-
tic modifier. The authors conclude that multiple heuristics with heuristic modifier offers

12

good quality solutions, and the presented adaptive linear combination is a highly effective
method.

Table 2.1 contains a timeline that represents the previous mentioned approaches chrono-
logically ordered.

13

14 2 State-of-the-Art

Table 2.1 Timeline of existing approaches

2007• Atsuta et al. - Constraint satisfaction problem solver using an hybridization of TS and Iterated Local
Search.

• Smet - drool’s solver with TS.

• Pillay - Two phase approach using Developmental Approach based on Cell Biology (creating the first
cell, cell division, cell iteration, and cell migrations).

2009• Müller - Two-phase approach with hybridization in which the first phase includes Iterative Forward
Search (IFS) and Conflict-based Statistics, and the second phase is composed of HC, GD, and SA.

• Abdullah et al. - Hybridization of electromagnetic-like mechanism and GD algorithm.

• McCollum et al. - Two phase approach, which first phase consists on using adaptive ordering heuristic,
and the second phase utilizes an extended version of GD.

2011• Alzaqebah and Abdullah - Two phase approach, which the first phase uses the largest degree ordering,
and the second phase utilizes an Artificial Bee Colony search algorithm.

• Turabeih and Abdullah - Two phase approach, which the first phase utilizes an hybridization of GC
heuristics, and the second phase uses an hybridization of electromagnetic-like mechanism and GD
algorithm.

2012• Gogos - Considered a two-phase approach with a pre-processing stage for hidden dependencies. The
first phase uses the greedy randomized adaptive search procedure, and the second phase is composed
of HC, SA, IP with Branch and Bound, finishing with a shaking stage.

• Turabieh and Abdullah - Tabu-based memetic algorithm which is an hybridization of a genetic
algorithm with TS.

• Demeester et al. - Hyper-heuristic approach of ’improved or equal’, SA, GD and late acceptance
strategy applied on already created solutions.

• McCollum et al. - Approach based on IP formulation.

• Sabar et al. - GC hyper-heuristic approach using last degree, saturation degree, largest colored degree
and largest enrollment.

• Sabar et al. - Two phase approach, which the first phase is composed of an hybridization of graph
coloring heuristics and the second phase uses an honey-bee algorithm.

2013• Abdullah and Alzaqebah - Hybridization approach with a modified bee algorithm and local search
algorithms like SA and late acceptance HC.

2014• Abdullah and Alzaqebah - Hybridization approach with a modified artificial bee colony with local search
algorithm such as late acceptance HC.

• Burke et al. - Uses an hyper-heuristic with hybridization of low level heuristics (neighbor operations),
thereafter uses an hyper-heuristic with hybridization of exam ordering methods.

• Hmer and Mouhoub - Multi-phase hybridization of meta-heuristics. A two phase approach with
pre-processing phase. First phase uses a variant of TS, and the second phase utilizes an hybridization
of HC, SA and an extended version of the GD algorithm.

• Brice et al. - Approach with three phases. First phase uses a Squeaky Wheel constructor, second phase
utilizes the weighted list created in the first phase for the neighbor search process, and the third phase
uses a weighted list based on the solutions’ soft constraints penalty.

• Rahman et al. - Constructive approach that divides examinations into easy and hard sets.

• Rahman et al. - Utilizes adaptive linear combinations of GC heuristics, like largest degree and
saturation degree, with heuristic modifier.

3

Software Architecture

In this chapter, a description of the developed software architecture is given. The subsys-
tems that compose the architecture are detailed. The proposed software architecture was
designed taking into consideration some important aspects such as: code readability, exten-
sibility, and efficiency.

The architecture of this project is divided in multiple layers. These are independent from one
another and each of them has its unique features considering the objectives of this project.
The layers presented in the project are named Data Layer (DL), Data Access Layer (DAL),
Business Layer (BL), Heuristics Layer (HL), Tools Layer (TL), and Presentation Layer (PL).
The assortment, dependencies and the main classes of each layer can be seen in Figure 3.1.

This project was developed using .NET (C# programming language). It was implemented
using Microsoft Visual Studio Community 2013 as the development tool, on Microsoft Win-
dows 7 Professional Operating System.

3.1 Data Layer

The DL stores all entities. The entities, which represent the different elements of a timetable,
such as exam, room, or timeslot, are instantiated after reading an ITC 2007 benchmark file.
Entities are maintained in memory and discarded after the program is finished.

3.2 Data Access Layer

The DAL allows access to the data stored in the DL. This layer provides repositories of each
type of entity. The repository was implemented in a way that its signature is generic, and
so can only be created with objects that implement the IEntity interface. This is manda-
tory because the generic repository’s implementation uses the identification presented in
IEntity.

The Repository class stores the entities in a list, with indexes corresponding to their respec-
tive identifiers. The Repository provides basic Create, Read, Update and Delete (CRUD)

15

Data Layer

Data Access Layer

Business Layer

Heuristics Layer Tools Layer

Presentation Layer

Models
«interface»

IRepository
Repository

PeriodHardConstraints Solutions Periods ConflictMatrix

Examinations RoomHardConstraints Rooms ModelWeightings

SimulatedAnnealing HillClimbing

Graph Coloring

NeighborSelection Loader FeasibilityTester

EvaluationFunction OutputFormatting

GraphColoringTest SimulatedAnnealingTest

Figure 3.1: Overview of the subsystems that compose the system software architecture.

functions to access and edit the stored entities. The signature of the entities and all the
specifications of the generic repository are presented in Figure 3.2.

16

Data Access Layer

Models

«interface»
IEntity

«interface»
ISolution

Solution

Period Examination Room

PeriodHardConstraint

RoomHardConstraint

InstitutionalModelWeightings

«interface»
IRepository<T>

+Insert(entity : T) : void
+Delete(entity : T) : void
+GetAll() : IEnumerable<T>
+GetById(id : int) : T
+EntryCount() : int

Repository<T>

#list : List<T>

+Insert(entity : T) : void
+Delete(entity : T) : void
+GetAll() : IEnumerable<T>
+GetById(id : int) : T
+EntryCount() : int

Figure 3.2: Overview of the DAL and the present entity types and repositories.

3.3 Business Layer

The BL allows access to the repositories explained above by, in each of the business classes,
providing CRUD functions or get/set functions, and specific functions that depend on the
type of the repository. One example of these latter functions is the following. Considering
the room hard constraints repository, one could invoke a method for obtaining all room hard
constraints of a given type. This can be seen in Figure 3.3, which includes all the BL classes,
methods, and variables. The CRUD functions provided by some of the business classes use
the CRUD functions from the Repository instance, which is presented on that same business
class.

It’s possible to store multiple instances of a certain type of entity, using to the BL classes,
which provide Repository functions for that objective. If that’s the case, a Repository in-
stance of that type of entity is used. Thus, business classes that only store one instance, do
not provide CRUD functions; instead, they provide set and get functions. This makes sense,
considering it only stores one instance of an entity, instead of multiple entity instances, not
needing the use of a Repository. One example of these classes is the ConflictMatrix.

The ConflictMatrix class represents the Conflict matrix, of size equal to the number of

17

18 3 Software Architecture

Business Layer

PeriodHardConstraints

#instance : PeriodHardConstraints
-phc_repo : IRepository<PeriodHardConstraint>

+Instance() : PeriodHardConstraints
+Kill() : void +Insert(phc : PeriodHardConstraint) : void
+Delete(phc : PeriodHardConstraint) : void
+GetAll() : IEnumerable<PeriodHardConstraint>
+GetById(id : int) : PeriodHardConstraint
+GetByType(type : PeriodHardConstraint.types) :
IEnumerable<PeriodHardConstraint>
+GetByTypeWithExamId(type : PeriodHardConstraint.types,
exam_id : int) : IEnumerable<PeriodHardConstraint>
+GetExamsWithChainingCoincidence(exam_id : int) :
IEnumerable<int>
-GetExamsWithChainingCoincidenceAux(exams :
List<int>) : void

Solutions

#instance : Solutions
-solutions_repo : IRepository<Solution>

+Instance() : Solutions
+Kill() : void +Insert(solution : Solution) : void
+Delete(solution : Solution) : void
+GetAll() : IEnumerable<Solution>
+GetById(id : int) : Solution

Periods

#instance : Periods
-periods_repo : IRepository<Period>

+Instance() : Periods
+Kill() : void
+Insert(period : Period) : void
+Delete(period : Period) : void
+GetAll() : IEnumerable<Period>
+GetById(id : int) : Period
+EntryCount() : int

ConflictMatrix

#instance : ConflictMatrix
-conflict_matrix : int[,]

+Instance() : ConflictMatrix
+Kill() : void
+Get() : int[,]
+Set(conflict_matrix : int[,]) : void

ModelWeightings

#instance : ModelWeightings

-imw : InstitutionalModelWeightings

+Instance() : ModelWeightings

+Kill() : void
+Get() : InstitutionalModelWeightings
+Set(imw : InstitutionalModelWeightings) : void

Examinations

#instance : Examinations
-examinations_repo : IRepository<Examination>

+Instance() : Examinations
+Kill() : void
+Insert(exam : Examination) : void
+Delete(exam : Examination) : void
+GetAll() : IEnumerable<Examination>
+GetById(id : int) : Examination
+EntryCount() : int

RoomHardConstraints

#instance : RoomHardConstraints
-rhc_repo : IRepository<RoomHardConstraint>

+Instance() : RoomHardConstraints
+Kill() : void
+Insert(rhc : RoomHardConstraint) : void
+Delete(rhc : RoomHardConstraint) : void
+GetAll() : IEnumerable<RoomHardConstraint>
+GetById(id : int) : RoomHardConstraint
+EntryCount() : int
+HasRoomExclusivity(exam_id : int) : bool
+GetByType(type : RoomHardConstraint.types) :
IEnumerable<RoomHardConstraint>

Rooms

#instance : Rooms
-rooms_repo : IRepository<Room>

+Instance() : Rooms
+Kill() : void
+Insert(room : Room) : void
+Delete(room : Room) : void
+GetAll() : IEnumerable<Room>
+GetById(id : int) : Room
+EntryCount() : int

Figure 3.3: Overview of the BL and its main classes.

examinations. Each matrix element (i, j) contains the number of conflicts between exami-
nations i and j. Even though it’s not an entity that implements IEntity, it must be easily
accessed in the higher layers. There’s only one instance of this class because there’s only
one conflict matrix for each dataset. Each dataset must be loaded using the Loader if that
dataset is to be tested.

All the business classes implement the Singleton pattern. This decision was made because
it makes sense to keep only one repository of each entity since it must be populated using
the Loader each time a dataset is tested. Another reason is to avoid passing the instances
references of the business classes to all the heuristics and tools that use them, and so, the
instances can easily be accessed statically.

3.4 Tools Layer

The TL contains all the tools used by the HL and by the higher layers, while using the
BL to access the stored entities. These tools are named EvaluationFunction, Loader,
NeighborSelection, FeasibilityTester, and OutputFormatting.

EvaluationFunction is a tool for solution validation, and computation of solution’s fitness
and distance to feasibility. A solution is only valid if the examinations are all scheduled, even
if the solution is not feasible. The distance to feasibility determines the number of violated
hard constraints. The fitness value refers to the score of the solution depending on the vio-
lated soft constraints and their penalty values. The distance to feasibility is used by the GC
heuristic to guarantee that the end solution is feasible, while the fitness is applied by the
meta-heuristics, such as SA, to compare different solutions.

The Loader loads all the information presented in a benchmark file into the repositories.
This tool is the first to be run, allowing the heuristics and other tools to use the entities
through the repositories. More information about this tool is given in Section 4.1.

The NeighborSelection is a tool that provides functions that verify if a certain neigh-
bor function can be applied in the current solution. If so, it returns a Neighbor object. A
Neighbor object does not represent a neighbor solution, but the changes that need to be ap-
plied to the current solution if this neighbor is to be accepted. Details about this are given
in Section 5.3.

The FeasibilityTester is a tool that provides functions, which efficiently check if a cer-
tain examination can be placed in a given period or room. An exam could be moved by only
changing the period, the room, or both. This tool is used by both the GC and the SA, even
though it only works if the examination to check is not yet set, in the provided solution.

The OutputFormatting tool is used to create the output file, given the final solution. This
file obeys the output file rules of the ITC 2007’s site [41], in order to be able to submit the
solution [42]. Submitting the solution allows one to check all violated hard constraints, soft
constraints, distance to feasibility and fitness values on the site’s page.

19

3.5 Heuristics Layer

The HL offers access to all the implemented heuristics. These are the GC, SA, and HC. All
these heuristics are applied to create the best timetable, with time constraints. Heuristics
like SA and HC make use of neighbor solutions, and so they utilize the NeighborSelection
tool for this effect. They also use tools like FeasibilityTester and EvaluationFunction
to help build the initial solution and check the fitness while improving the current solution,
respectively.

A detailed explanation about these heuristics is provided in both Chapters 4 and 5.

3.6 Presentation Layer

The PL’s objective is to run the project functionalities, invoking all the other modules, and
to check the final results. It’s in this layer that all the experiments and tests are made, such
as changing input parameters on both SA and HC, to check if better results can be achieved.

20

4

Loader and Solution Initialization

The Loader and the solution initializer (heuristic) are the first tools used in this project. The
Loader and Graph Coloring heuristic (solution initializer) are executed only once, so the
major part of the execution time will be used by the meta-heuristic(s).

4.1 Loader Module

The Loader’s job is to load all the information presented in the dataset files. Each dataset
file includes information about examinations, enrolled students, periods, rooms and their
penalties, period and room hard constraints, and the information about the soft constraints,
named Institutional Weightings. The presence of period and room hard constraints are op-
tional.

This tool not only loads all the data to their corresponding repositories, but also creates
and populates the conflict matrix depending on the data obtained previously. The conflict
matrix contains the information about the conflicts between each pair of examinations.

4.1.1 Analysis of benchmark data

Table 4.1 presents the specifications of the 12 datasets of the ITC 2007. The instances pre-
sented have different degrees of complexity, that is, ease of finding a feasible solution and
number of feasible solutions. Using the developed GC heuristic (described in Section 4.2),
dataset 4 is the most complex one, as no feasible solution could be obtained. The high con-
flict matrix density, in addition to the fact there’s only one room (with the capacity of 1200
seats), and the presence of 40 period hard constraints, help to explain the dataset complex-
ity.

All the specifications and benchmark data from the 12 datasets of the ITC 2007 timetabling
problem are shown in Table 4.1.

4.1.2 Implementation

The development of the Loader is divided into two main parts: the loading part, which loads
the dataset file into the repositories using the business layer, and the creation and popula-
tion of the conflict matrix.

21

Table 4.1: Specifications of the 12 datasets of the ITC 2007 examination timetabling prob-
lem.

conflict
Dataset students exams rooms matrix time

density slots

1 7891 607 7 0.05 54
2 12 743 870 49 0.01 40
3 16 439 934 48 0.03 36
4 5045 273 1 0.15 21
5 9253 1018 3 0.009 42
6 7909 242 8 0.06 16
7 14 676 1096 15 0.02 80
8 7718 598 8 0.05 80
9 655 169 3 0.08 25

10 1577 214 48 0.05 32
11 16 439 934 40 0.03 26
12 1653 78 50 0.18 12

The loader was implemented using the Loader base class, from which the LoaderTimetable
extends. The Loader class provides methods to read the file contents. These two classes are
depicted in Figure 4.1.

Unlike the Loader, LoaderTimetable depends on the structure of the dataset files. This
class will use the Loader functions to go through a dataset file, and so, populate the reposi-
tories depending on the information read by the Loader class. The LoaderTimetable offers
operations like Load and Unload to load all the information in a dataset file and to empty the
repositories, respectively.

The implementation of the LoaderTimetable class is all about the Load method. This public
method will be asking for new lines and reading the tokens out of it, using the Loader class.
This procedure will take place as long as there are new lines to read. It consists in a cycle
that gets a new line and checks if the first string (e.g., “Exams”) is contained on that line. If
so, it runs InitExaminations, if not, checks if the next string (e.g. “Periods”) is contained
on that line, and so on, until it reaches the end of the file. The pseudo code of this method
can be seen on Algorithm 1.

The method InitExaminations reads each examination and enrolled students, and stores
them in a Hashmap, treating the students as keys and the examinations which they attend as
values. With this student-examinations organization, the InitConflictMatrix simply goes
to all pairs of examinations for each student, and add a conflict in the matrix for that pair of
examinations.

22

Tools Layer

«extend»

Loader

+Restart() : void
+NextLine() : bool
+ReadNextToken() : string
+ReadCurrToken() : string
+ReadNextLine() : List<string>

LoaderTimetable

+Unload() : void
+Load() : void
-InitSolutions() : void
-InitInstitutionalWeightings() : void
-InitRoomHardConstraints() : void
-InitPeriodHardConstraints() : void
-InitRooms() : void
-InitPeriods() : void
-InitExaminations() : void
-InitConflictMatrix() : void

Figure 4.1: Specification of Loader and LoaderTimetable tools

4.2 Graph Coloring

Graph Coloring is the heuristic used to generate a feasible solution. This heuristic runs right
after the loader. The implementation of this heuristic was based on Müller’s approach [14].

4.2.1 Implementation

The computation of the proposed heuristic is divided into four phases. In the first phase, it
starts by editing the conflict matrix, in order to add the exclusion hard constraints to the
conflict matrix. This process is possible because the exclusion hard constraint is also a clash
between a pair of examinations. This makes the algorithm easier to implement later on, be-
cause checking the conflict matrix for a clash between a pair of examinations now works for

Algorithm 1 LoaderTimetabling’s Load method.
Input: void
Read new line
repeat

Read next token token
If token == null Then break

If token Contains “Exams” Then InitExaminations()
Else If token Contains “Periods” Then InitPeriods()
Else If token Contains “Rooms” Then InitRooms()
Else If token Contains “PeriodHardConstraints” Then InitPeriodHardConstraints()
Else If token Contains “RoomHardConstraints” Then InitRoomHardConstraints()
Else If token Contains “InstitutionalWeightings” Then InitInstitutionalWeightings()
Else If Cannot read new line Then break

until Always
InitSolutions()
InitConflictMatrix()
Output: void

23

the student conflicts and exclusion.

The second phase erases all examination coincidence hard constraints’ occurrences that
have student conflicts. It is mentioned in the ITC 2007 website [43] that if two examinations
have the examination coincidence hard constraint and yet ’clash’ with each other due to
student enrollment, this hard constraint is ignored.

The third phase populates and sort the assignment lists, which are four lists that hold the
unassigned examinations. These four lists contain:

• Unassigned examinations with “room exclusivity” hard constraint.
• Unassigned examinations with “after” hard constraint.
• Unassigned examinations with “examination coincidence” hard constraint.
• All other unassigned examinations.

The Largest Degree Ordering Graph Coloring heuristic is used on these four lists, and so,
each list is sorted by the number of student conflicts. The examination assignment is done
taking the present list ordering. First, all the examinations with room exclusivity are as-
signed, then all that have the after constraints, and finally all with examination coincidence.

The fourth phase is the examination assignment phase (the most important phase of this
heuristic). It is based on Müller’s approach [14]. It starts to assign the examinations with
higher conflict, as mentioned above, using the four lists method. There are two types of
assignment:

• Normal assignment – If it’s possible to assign the chosen examination to a period and
room, a normal assignment is processed. In this type of assignment, of all the possible
periods to assign, one of them is chosen randomly. It should be noted that a possible pe-
riod to assign means that the examination can be assigned to that period and at least in
one room on that period. After choosing the period, the same will be done to the rooms,
and so, a random room will be chosen from all possible assignable rooms for that exam-
ination and period. If the current examination has to be coincident to another, and so,
set to the same period as the other, the rules explained will not occur. Instead, only that
period will be considered and if the period is not feasible to the current examination, the
normal assignment will not take place.

• Forcing assignment – Occurs if there are no possible periods to assign the chosen exami-
nation, because the normal assignment was not possible. A random period and room are
selected and the examination will be forced to be assigned on those, unassigning all the
examinations that conflict with this assignment. As the normal assignment, there are ex-
ceptions to this rule. If a coincident examination is already set, the examination to be set
will be forced to be on the same period as the coincident examination, in a random room.
Forcing an examination to a specific period because of a coincident examination some-
times caused infinite or very long loops in dataset 6. Because of this, there’s a chance
of 25% that the previous rule does not occur, but instead, it unassigns all coincident
examinations and try to assign the current examination to a random period. We chose
25% because this event must happen rarely to avoid infinite loops. Exam_coincidence
hard constraint is present in larger amounts only in a few datasets, and is only applied

24

to pairs of examinations. Finding an exam_coincidence chain with more than 3 examina-
tions is very rare, so even if this event triggers in other datasets, it is not considered a
problem. It would be considered a problem if the event was to be triggered more often,
or if bigger exam_coincidence chains existed, degrading the efficiency of the heuristic.

The GC heuristic implementation only performs assignments and unassignments of examina-
tions and checks examination clashes, when forcing an assignment. The feasibility checking
done to periods and rooms is made by the FeasibilityTester tool, as mentioned in Sec-
tion 3.3. The GraphColoring and FeasibilityTester classes, with all their attributes and
methods, can be seen in Figure 4.2. The algorithm of the GC heuristic, which was explained
in this section, is described in Algorithm 2.

4.2.2 Stochasticity

In order to produce random initial solutions, the implemented GC heuristic must have a
stochastic behavior, i.e., it should produce different results in different runs. To verify the
GC heuristic stochasticity, the following test was conducted. In order to have a statistically
significant result, a total of 10 runs were performed; for each run, the period where each
exam was scheduled was registered. Finally, it was observed that the periods distribution
was random meaning that the generated timetables have the same examinations placed in
random periods for different runs, forming random solutions.

4.3 Solution Initialization Results

The goal of the initialization procedure is not to find the best possible solution (in terms of
fitness), but find feasible solutions. Some datasets are simpler than others, always getting
good and stable execution times. Others can be harder, getting worse execution times and
instability. An unstable dataset means that the results vary too much, and so some tests
show very good execution times and others not so much. The Graph Coloring heuristic re-
sults on the 12 datasets can be seen in Table 4.2. These results were obtained by running
the heuristic, 10 times for each dataset, and computing the average for both fitness and
execution time.

Table 4.2 exhibits the average fitness of the solutions created for each dataset, the aver-
age execution time and standard deviation, and the percentage of time used in the first and
second phase of this project. The standard deviation was taken due to the large variation
on execution times of datasets when creating initial solutions, using the GC heuristic. Ob-
serving the results, it can be concluded that datasets 6, 11, and 12, present some degree of
instability due to a large execution time standard deviation, compared to the other datasets.
The datasets 11 and 12, even though the average execution time was 3405 and 3690, the
tested values varied from 864 to 7642 and from 201 to 6452, respectively.

The allowed execution time is 221000 milliseconds for each test made to each dataset.
This time was picked by the benchmark program provided by the ITC 2007 site [44] when
executed on the machine where all testes were performed. In the results presented on Table

25

26 4 Loader and Solution Initialization

Heuristics Layer

Tools Layer
«include»

GraphColoring

-examinations : Examinations
-period_hard_constraints : PeriodHardConstraints
-periods : Periods
-room_hard_constraints: RoomHardConstraints
-rooms : Rooms
-conflict_matrix : int[,]
-feasibility_tester : FeasibilityTester
-solution : Solution
-unassigned_examinations_with_exclusive :
List<Examination>
-unassigned_examinations_with_coincidence :
List<Examination>
-unassigned_examinations_with_after :
List<Examination>
-unassigned_examinations :
List<Examination>

+Exec() : Solution
-PopulateAndSortAssignmentLists() : void
-AddExclusionToConflictMatrix() : void
-EraseCoincidenceHCWithConflict() : void
-ExaminationNormalAssignment(exam : Examination) : bool
-ExaminationForcingAssignment(exam : Examination) : void
-UnassignExaminationsAndCoincidences(exams : List<int>) : void
-UnassignExamination(exam : Examination) : void
-UnassignExaminationAndCoincidences(exam : Examination) : void
-UnassignExaminations(exams : List<int>) : void
-AssignExamination(period : Period, room : Room,
exam : Examination) : void

FeasibilityTester

-examinations : Examinations
-period_hard_constraints : PeriodHardConstraints
-room_hard_constraints: RoomHardConstraints
-rooms : Rooms
-conflict_matrix : int[,]

+IsFeasiblePeriod(soltution : Solution,
exam : Examination, period : Period) : bool
+IsFeasibleRoom(soltution : Solution,
exam : Examination, period : Period, room : Room) : bool
+IsFeasiblePeriodRoom(soltution : Solution,
exam : Examination, period : Period, room : Room) : bool
+RoomCurrentCapacityOnPeriod(solution : Solution,
period : Period, room : Room) : int

Figure 4.2: Graph Coloring and Feasibility Tester

Algorithm 2 Graph Coloring algorithm.
• Initial solution solution

1: Input: void
2: Add exclusion to conflict matrix
3: Erase coincidence HC that contains conflict HC
4: Populate and sort assignment examination lists
5: repeat
6: Get the right list to use list
7: Remove last examination from list, exam
8: If Not NormalAssign(solution, exam) Then ForceAssign(solution, exam)
9: until No more examinations to assign
10: Output: solution

Table 4.2: Some of the Graph Coloring’s performance features.

Execution Standard Time elapsed Time elapsed
Dataset Fitness time Deviation in the 1st in the 2nd

(ms) σ (ms) phase (%) phase (%)

1 49 028 202 61 0.09 99.91
2 103 907 250 2 0.11 99.89
3 170 232 942 20 0.43 99.57
4 – – – – –
5 349 319 227 5 0.10 99.9
6 60 857 297 192 0.13 99.87
7 155 708 569 19 0.26 99.74
8 397 868 243 8 0.11 99.89
9 15 680 12 1 0.01 99.99
10 121 164 110 6 0.05 99.95
11 260 310 3405 2170 1.54 98.46
12 11 887 3690 1829 1.67 98.33

4.2, we can conclude that a very short amount of time is used on this first phase, as com-
pared to the one being used on the second phase.

As shown in Table 4.2, the heuristic was not able to produce a feasible solution for dataset 4.
The reason for this might be the presence of an infinite cycle of normal and forcing assign-
ments, resulting in assigning and unassigning the same examinations. Different approaches
have been tried in order to solve this problem. These include using a single unsorted list
of unassigned examinations, using all four unsorted lists, and keeping the four lists sorted
but changing the priority order of their usage. Oddly, using only one unsorted list led to the
best results, sometimes leaving only 20 to 30 examinations to be placed, while the default
approach varied between 90 and 120. Unfortunately none of the approaches were able to
generate a feasible solution.

In the proposed approach, the exams were sorted by the number of students conflicts with
other exams. Other approaches to tackle the problem would be, for example, use the same
sorting criteria with examination conflicts.

27

28

5

Proposed Approach: Local Search

The proposed solution consists on the use of a local search meta-heuristic(s) in order to
improve the solution given by the GC heuristic. This approach uses SA, based on Müller’s
approach [14], followed by the use of HC. The use of HC is justified by the fact that SA
does not guarantee a good control of the execution time, and so the parameters are given
to make it almost use all the available time, which is, as mentioned in the previous chapter,
221 seconds. The rest of the optimization is carried out by HC, whose execution time is
perfectly controllable.

5.1 Simulated Annealing

SA is a single-solution meta-heuristic (section 2.2.3). This meta-heuristic optimizes a solu-
tion by generating neighbor solutions which might be accepted, given an acceptance cri-
terion. A neighbor solution is obtained by applying a movement operator (also known as
neighbor operator) to the current solution, creating a new solution which is a neighbor
of the current one. A neighbor operator, in this context, could be the movement of an ex-
amination to another time slot. Being a single-solution meta-heuristic, it generates a single
neighbor. The neighbor operators and the acceptance criterion are the most important parts
of this algorithm. Changes on one of these, may get the algorithm to behave in very different
ways and end up with quite different solutions.

The acceptance criterion will, considering the current and a neighbor solution, give the
percentage of acceptance of the neighbor solution. Most of the approaches using this heuris-
tic accept a new neighbor solution if it is better than the current one. Otherwise, there’s
a chance that the neighbor solution is still accepted, depending on certain parameters.
These parameters are the Temperature (normally given as maximum and minimum temper-
ature) and the Cooling Schedule. By definition, the higher the temperature, the higher is the
chance to accept a worse solution over the current solution. The cooling schedule, as the
name suggests, is a function that lowers the temperature at a given rate. The SA algorithm
finishes when the current temperature is lower or equal to the minimum temperature. The
temperature should start high enough in order to be able to escape from local optima, by
accepting worse solutions found during the trajectory.

29

5.1.1 Implementation

The SA was implemented in a way that it is independent from the type of the cooling sched-
ule and neighbor generator. The SimulatedAnnealing class is abstract and implements ev-
erything except for the neighbor generator, which is an abstract method that must be imple-
mented in order to decide how the neighbor generator behaves. It also does not implement
the evaluation function (the one that computes the fitness value of a solution or neighbor).
The SimulatedAnnealingTimetable implements the SimulatedAnnealing abstract class,
which implements the neighbor generator method and the evaluation function attribute. The
SimulatedAnnealing and SimulatedAnnealingTimetable’s methods and attributes can be
seen in Figure 5.1.

The SimulatedAnnealing abstract class has the methods Exec, Exec2, and ExecLinearTimer,
which are all similar, but were created to test different approaches. All these methods share
the same code, with the exception of the cooling schedule (the way the temperature is up-
dated) and acceptance criterion. The pseudo code for SA can be seen in Algorithm 3.

The ExecLinearTimer has a linear cooling schedule, which is proportional to the running
time, and uses the acceptance criterion

P (δE, T) = e
−δE
T , (5.1)

with T being the current temperature and δE the fitness difference between the new neigh-
bor and current solution.

The Exec method shares the same acceptance criterion but uses a geometric cooling sched-
ule

T (i+ 1) = T (i).r, (5.2)

with r being the temperature decreasing rate (0 < r < 1). In the geometric cooling schedule,
the closer the rate is to unity, the longer the algorithm takes to finish and wider is the area
of solutions to be analyzed in the solution space.

The Exec2 method is the one used in this project. It uses an exponential (decreasing) cooling
schedule [45]

T = Tmaxe
−r.t, (5.3)

where t is the current span (counter initiated at 0), Tmax the maximum/initial temperature,
and r the decreasing rate.

This method also uses a different acceptance criterion

P (δE, T, f(s)) = e
−δE
T.f(s) , (5.4)

being δE the fitness difference between the new neighbor and current solution, T the current
temperature, and f(s) the solution fitness.

30

5.1 Simulated Annealing 31

Heuristics Layer

SimulatedAnnealing

#evaluation_function : IEvaluationFunction
-cooling_schedule : ICoolingSchedule

+Exec(solution : ISolution, TMax : double, TMin : double, loops : int,
type : int, minimize : bool, time_limit : long) : ISolution
+Exec2(solution : ISolution, TMax : double, TMin : double, loops : int,
rate : double, type : int, minimize : bool, time_limit : long) : ISolution
+ExecLinearTimer(solution : ISolution, TMax : double, TMin : double,
milliseconds : long, type : int, minimize : bool) : ISolution
+GetSANumberEvaluations(Tmax : double, R : double, K : double,
TMin : double) : long
#GenerateNeighbor(solution : ISolution, type : int) : INeighbor
#InitVals(type : int) : void

SimulatedAnnealingTimetable

#evaluation_function : IEvaluationFunction
-neighbor_selection_timetable : NeighborSelectionTimetable
+type_random : int

+type_guided1 : int

+type_guided2 : int

-room_change : int
-period_change : int
-period_room_change : int
-room_swap : int
-period_swap : int
-period_room_swap : int
+generated_neighbors : int
-random : Random
-total_neighbor_operators : int

#GenerateNeighbor(solution : ISolution, type : int) : INeighbor
#GenerateNeighbor(solution : Solution, type : int) : INeighbor
-GenerateRandomNeighbor(solution : Solution) : INeighbor
-GenerateGuidedNeighbor1(solution : Solution) : INeighbor
-GenerateGuidedNeighbor2(solution : Solution) : INeighbor
#InitVals(type : int) : void
+EstimateTotalNumberOfNeighbors(average_reps : int,
total_time : int, solution : Solution) : long

Figure 5.1: Simulated Annealing classes

Algorithm 3 Simulated Annealing method.
Input:

• s // Initial solution

• TMax // Maximum temperature

• TMin // Minimum temperature

• loops // Number of loops per temperature

T = Tmax ; // Starting temperature
Ac = AcInit() ; // Acceptance criterion initializer
repeat

repeat
Generate a random neighbor s′;
δE = f(s′) − f(s) ;
If δE ≤ 0 Then s = s′ // Accept the neighbor solution
Else Accept s′ with a probability computed using the Ac;

until Number of iterations reach loops
T = g(T) // Temperature update

until T < TMin

Output: s // return the current (best) solution

5.1.2 Variable Rate Computation

As mentioned previously in Section 4.3, according to the ITC 2007 rules, the allowed time
considering the used computer is 221000 milliseconds. As this time limit is the only impo-
sition, it was decided to implement a SA with an adaptive cooling schedule, in order to use
all the available time for the optimization process independently of the chosen dataset. This
approach contrasts with the one in which a fixed cooling schedule is used. Each dataset has
its own characteristics and using a given set of parameters for one set does not guaran-
tee that the results will be equivalently good for the other datasets. For example, suppose
that we’ve determined the best parameters for the first dataset, considering a time limit
of 200000 milliseconds. Running the algorithm using the same parameters for the remain-
ing datasets will not terminate on the time limit of 200000 milliseconds: the datasets with
less number of resources (exams, rooms, students) will be optimized using less time; on the
other way, the largest datasets will demand more time, eventually running over the imposed
time limit.

Hence, a SA with a variable rate was implemented to make this heuristic run closer to
the given time limit for all the datasets. Considering it is not certain that the algorithm will
run within the given 221000 milliseconds, because of its stochastic nature, a time limit was
added to this meta-heuristic as well, ending this heuristic automatically if the time limit is
reached. To avoid the performance degradation incurred by the algorithm’s halting before
reaching the end of the optimization, a time offset was imposed. This offset is a percentage
of the total allowed algorithm execution time. For example, instead of letting the heuristic
run for 221000 milliseconds, one allows it to run for 185640 milliseconds, to have a safety
margin. The offset used is 16%.

In order to determine the proper cooling schedule, the algorithm starts by simulating the
execution of this heuristic, by running all the neighbor operators AverageReps times, which

32

Algorithm 4 Rate computing.
Input:

• s // Solution

• TMax // Maximum temperature

• TMin // Minimum temperature

• reps // Number of loops per temperature

• exec_time // Execution time limit

sa = SAInit() ;
n = 50 ; // Number of times each operator runs
comp_neighbors = sa.EstimateNumberNeighbors(n, exec_time, s) ;
rate = 1.50−02 ; // Initial default rate
power = −3 ;
rate_to_sub = 10power ; // Rate decrementing
total_neighbors = sa.GetNumberNeighbors(TMax, rate, reps, TMin) ;
repeat

If rate− rate_to_sub ≤ 0 Then power = power − 1 ; rate_to_sub = 10power ;
rate = rate− rate_to_sub ;
total_neighbors = sa.GetNumberNeighbors(TMax, rate, reps, TMin) ;

until total_neighbors < comp_neighbors
rate = rate+ rate_to_sub ; // To guarantee that total_neighbors < comp_neighbors
Output: rate // Return computed rate

in this approach, the AverageReps used is 50. Using the elapsed time and the given time
limit, we estimate the number of neighbors that would be generated if this heuristic was to
be run within the time limit. In order to compute the number of total neighbors, we use the
expression

CompNeighbs = TotalT ime/CompTime ∗AverageReps ∗ TotalOperats, (5.5)

being TotalT ime the time limit (221000 milliseconds), CompTime the elapsed time used in
the simulation, AverageReps the number of loops that all the neighbors must run (50 runs),
and TotalOperats the total number of used operators (5 operators). After that, we compute
the exact number of the neighbors (TotalNeighbs) that will be generated for the given pa-
rameters, using the default rate. This is achieved by simulating this heuristic using those
parameters, cooling the current temperature until it reaches the minimum and returning
the number of desired generated neighbors. If the TotalNeighbs is above the CompNeighbs,
a lower rate will be used to make another simulation, until the TotalNeighbs for the given
rate reaches a value that is close to the TotalNeighbs. The pseudo code of this method can
be seen in Algorithm 4.

Some testings were made in order to check this heuristic’s behavior, using the following
parameters: TMax = 0.1, TMin = 1e − 06, loops = 5, exec_time = 50000, and the com-
puted_rate = 0.00016. As can be seen in Figure 5.2, it starts by accepting all worse and
better neighbor solutions. In the end, the temperature is so low that it becomes harder to
accept worse solutions, ending up acting similar to the HC procedure. The axis of abscissas
represents the indexes of the generated neighbors and the axis of ordinates represents the
current solution’s score.

33

0 1,000 2,000 3,000

1

2

3

·104

Number of iterations

S
o
lu

ti
o
n

fi
tn

e
ss

Figure 5.2: Simulated Annealing results

5.2 Hill Climbing

HC is a meta-heuristic different from the SA family of meta-heuristics, in the sense that it
only accepts better solutions. So, as long as it reaches a local optimum, it can’t get out of
that point because each neighbor solution is worse. In this way, HC only has one parameter
that is the number of iterations or time limit, which controls the algorithm’s execution time.

In the evaluation undertaken, the best results were obtained with the Exec2 version of SA.
SA was parametrized in order to finish execution within the specified time limit imposed by
the ITC 2007 rules. HC is executed after SA, using the remaining time, until the time limit
is reached.

5.2.1 Implementation

The implementation of this heuristic is very similar to that of the SA; it contains the classes
HillClimbing and HillClimbingTimetable, which are simplified versions of the SA classes.
The HillClimbing and HillClimbingTimetable’s methods and attributes can be seen in
Figure 5.3.

34

Heuristics Layer

HillClimbing

#evaluation_function : IEvaluationFunction

+Exec(solution : ISolution, milliseconds : long, type : int,
minimize : bool) : ISolution
#GenerateNeighbor(solution : ISolution, type : int) : INeighbor

HillClimbingTimetable

#evaluation_function : IEvaluationFunction
-neighbor_selection_timetable : NeighborSelectionTimetable
+type_random : int

-random : Random
+generated_neighbors : int
-total_neighbor_operators : int

#GenerateNeighbor(solution : ISolution, type : int) : INeighbor
#GenerateNeighbor(solution : Solution, type : int) : INeighbor
-GenerateRandomNeighbor(solution : Solution) : INeighbor

Figure 5.3: Hill Climbing classes

5.3 Neighborhood Operators

Neighborhood operators are applied to a solution, in order to create other valid solutions
(neighbor solutions), but not necessarily feasible. In this context, the core of all operations
are the relocation of the examinations.

The implementation of neighborhood selection went through different approaches. Firstly,
random selection was implemented. This approach always chooses a random operator to
generate a new neighbor. Thereafter, guided approaches were implemented. The first one
raised the probability of selecting one operator if this one generated a better neighbor
solution. The probability of that operator is reduced in an equal amount if the operator gen-
erated a worse solution.

The authors have implemented other variations of the first approach, where increasingly
higher/lower probabilities of neighbor selection were defined based on the success/failure
of the operator. Despite this, the random approach almost always showed better results
compared to the guided approaches.

The neighborhood operators, in this context, are all based on moving examinations in terms
of period or room. This implementation uses six different neighborhood operators:

35

• Room Change - An examination is randomly selected. After that, a room is randomly
selected. If the assignment of the random examination to the random room, while main-
taining the period, does not violate any hard constraints, that neighbor is returned. If
not, the adjacent rooms are checked until one of them yields a feasible solution. If it
reaches the limit of rooms and no feasible solution is found, no neighbor is returned;

• Period Change - An examination is randomly selected. After that, a period is randomly se-
lected. If the assignment of the examination to the period, while keeping the room, does
not clash with any hard constraints, that neighbor is returned. If not, the adjacent peri-
ods are sequentially checked until one of them creates a feasible solution. If it reaches
the limit of periods and no feasible solution is found, no neighbor is returned;

• Period & Room Change - An examination is randomly selected. After that, a room and pe-
riod are randomly selected. If the assignment of the examination to the room and period
does not clash with any hard constraints, that neighbor is returned. If not, the adjacent
rooms are checked for each of the next periods, until one of them creates a feasible so-
lution. If it reaches the limit of periods and rooms and no feasible solution is found, no
neighbor is returned;

• Room Swap - An examination is randomly selected. After that, a room is randomly se-
lected. If the selected examination can be placed in that room, while keeping the period,
then a Room Change neighbor is returned instead. If not, if the swapping of the examina-
tion with any of the examinations presented in the room, keeping the same period, does
not clash with any hard constraints, that neighbor is returned. If not, the examinations
presented in the adjacent rooms are checked until a feasible solution is found (always
checking first if a Room Change can be returned instead). If it reaches the limit of rooms
and no feasible solution is found, no neighbor is returned;

• Period Swap - An examination is randomly selected. After that, a period is randonly se-
lected. If the selected examination can be placed in that period, while maintaining the
room, then a Period Change neighbor is returned instead. If not, if the swapping of the
random examination with any of the examinations presented in the period, keeping the
same room, does not clash with any hard constraints, that neighbor is returned. If not,
the examinations presented in the adjacent periods are tested until a feasible solution is
found (always testing first if a Period Change can be returned instead). If it reaches the
limit of periods and no feasible solution is found, no neighbor is returned;

• Period & Room Swap - An examination is randomly selected. After that, a period and
room are randomly selected. If the selected examination can be placed in that period
and room, then a Period & Room Change neighbor is returned instead. If not, if the
swapping of the random examination with any of the examinations presented in the pe-
riod and room does not clash with any hard constraints, that neighbor is returned. If not,
the examinations presented in the adjacent periods and rooms are tested until a feasi-
ble solution is found (always testing first if a Period & Room Change can be returned
instead). If it reaches the limit of periods and rooms and no feasible solution is found, no
neighbor is returned.

36

5.3.1 Implementation

The original concept of neighbor solution is to have another solution apart from the current
one, which is the result of applying the neighborhood operator to the current solution. In
order to have an efficient implementation, the neighbor only keeps the changes introduced
in the solution, and not the changed solution itself. With this design, there’s no need to repli-
cate the original solution and to apply the neighborhood operator to it in order to obtain the
neighbor solution. The process of replacing the original solution with the neighbor, consists
in applying to the current solution the movement registered in the neighbor.

Every neighbor object must implement the interface INeighbor, which exposes the methods
Accept, Reverse and a real value that represents the fitness of the neighbor (the fitness of
the new solution if this neighbor is to be accepted). The Accept method moves the current
solution to the neighbor solution. The Reverse method undoes the operation, getting then
back the old solution. The different neighbors and their methods are illustrated in Figure
5.4.

5.3.2 Statistics

It is important to make sure that the algorithm works as planned. This includes the desired
stochastic behavior, and all the neighbor operators must contribute positively to obtain bet-
ter results.

In this particular case, to make sure this heuristic is stochastic, we must guarantee that
all the examinations are moved roughly the same number of times. Considering that some
examinations are harder to move, these are moved less times than others, but the difference
is not significant. A study was made to compare, in the same run, the number of rejected and
accepted neighbors for each examination. The examinations are sorted in descending order
by the number of conflicts. Figure 5.5 represents a color map in which the colors represent
the number of times each examination was accepted (x = 1) and rejected (x = 2), for dataset
1. As can be seen, some examinations are not even selected to move, and so, have zero ac-
cepted and rejected results. In this particular dataset, only two lines have zero counters, as
checked in the results file. These two examinations have exam_coincidence hard constraint
and are only able to be in one room due to the number of students being too high. The SA
algorithm is not optimized to move more than one examination at the same time. This means
that those two examinations can never be moved to another period, because the SA can only
move one examination at a time and these examinations can’t be moved to another room,
because they don’t fit in other rooms.

Other blue lines, which have values between 1000 and 1, are rare. This occurs not only
because the examination is hard to move due to its conflicts, but may also have the
exam_coincidence and a really short number of rooms in which that examination can fit.
This problem creates a limitation in the SA heuristic, preventing the SA from scanning parts
of the solution space, and eventually degrading the quality of the final result.

37

38 5 Proposed Approach: Local Search

Heuristics Layer

«include»

«include»

SimulatedAnnealingTimetable

NeighborSelectionTimetable

-examinations : Examinations
-rooms : Rooms
-periods : Periods
-feasibility_tester : FeasibilityTester
-evaluation_function_timetable : EvaluationFunctionTimetable

+RoomSwap(solution : Solution) : INeighbor
+PeriodSwap(solution : Solution) : INeighbor
+PeriodRoomSwap(solution : Solution) : INeighbor
+RoomChange(solution : Solution) : INeighbor
+PeriodChange(solution : Solution) : INeighbor
+PeriodRoomChange(solution : Solution) : INeighbor

INeighbor

+fitness : int

+Accept() : ISolution
+Reverse() : ISolution

PeriodChangeNeighbor

RoomChangeNeighbor

PeriodRoomChangeNeighbor

PeriodSwapNeighbor

RoomSwapNeighbor

PeriodRoomSwapNeighbor

Figure 5.4: Neighborhood selection and operators

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

0

100

200

300

400

500

600

Accepted (x=1) and rejected (x=2) neighbors

E
xa

m
in

d
e
xe

s

0

500

1 000

1 500

2 000

2 500

3 000

3 500

4 000

Figure 5.5: Accepted and rejected neighbors for each examination in the Simulated Anneal-
ing.

5.3.3 Neighborhood Operators Effect

One of the most important aspects when dealing with the SA is the choice of the neighbor
operators. It is crucial that all the neighbor operators contribute positively. If a neighbor
operator contributes negatively, it’s better not to use it. Müller proposed the first five oper-
ators [14] Room Change, Period Change, Period & Room Change, Room Swap, and Period
Swap. We add to the Müller’s set a sixth operator, the Period & Room Swap operator. In
the sequel we present a study of the influence of this operator. For all 12 datasets, 20 runs
were performed, computing the fitness average for each of the two cases. Table 5.1 shows
the improvement factor for using six neighbors instead of five. In most cases, it’s worse
compared to using the original five neighbor operators, and so, the 6th operator will not
be used in this project’s results. The results of using five operators also showed that more
neighbors were generated and the percentage of feasible generated neighbors compared to
the unfeasible, for each dataset, is also higher compared to using six neighbor operators.

39

Table 5.1: Improvement factor (percentage) between using five and six neighbor operators.

5 6 Improvement
Dataset Neighbors Neighbor Factor (%)

Operators Operators

1 5019 5055 -0.7
2 478 523 -9.4
3 14 997 15 228 -1.5
4 – – –
5 4950 4819 +1.5
6 27 680 27 528 +0.5
7 4799 4812 -0.3
8 8551 8741 -2.2
9 1141 1150 -0.8

10 28 219 25 586 +9.3
11 45 344 45 630 -0.6
12 7222 7679 -6.3∑

148 400 146 751 -10.5

5.4 Fitness Computation

Fitness evaluation in timetable automation, due to its complexity, has a great influence in
the algorithm performance. Hence, good performance of this step is required. As mentioned
in the Subsection 3.4, this value is computed using the EvaluationFunction tool, which in
a first approach, implies for generated neighbors, the recalculation of their fitness value.
Tests were made to study this approach since the fitness results were not as good as ex-
pected. The tests showed that this approach was having poor performance, since most of
the time was used to compute the fitness for each new neighbor generated solution.

A new approach was implemented, which consists in computing the fitness incrementally.
This means that for each new generated neighbor, a new fitness value is computed based on
the current solution’s fitness. This approach takes advantage of the fact that the operations
applied to the current solution are simple and so the neighbor solutions are, in most part,
equal to the current solution. Thus, the fitness computation is performed considering only
the small changes between the current solution and the new generated neighbor solution.

Tests were made to compare both approaches and, using the same parameters, for the
first dataset it was possible to achieve equivalent results, 19 times faster. As a consequence
if both approaches would use both the same parameters, and execution time, the new ap-
proach would have generated 19 times more neighbors, thus exploring the solution space
with more detail.

5.4.1 Implementation

In order to compute the fitness of the neighbor solutions incrementally, a fitness function
must be implemented depending on the type of neighbor. Considering that all neighbors
have a reference to the solution they derive from, and the methods Accept and Reject, it’s

40

possible to access the current solution and the neighbor generated solution (Accept will
change the current solution and so the reference presented in this neighbor, replacing with
the neighbor solution).

The differences between the fitness values of the current solution and the new neighbor’s
depend on the type of neighbor created. For example, if a RoomSwapNeighbor is created, the
changes will occur in the mixed durations constraints value of the periods and rooms of the
swapped examinations. It is necessary to compute the impact (fitness values) of these con-
flicts in the current solution and subtract their values to the current fitness, proceeding with
computing the same impact but now for the generated neighbor and to sum these values to
the current fitness, thus obtaining the new neighbor’s fitness value. The impact computing,
mentioned above, is a simple rule that must be followed by all the soft constraints when
computing the new neighbor’s fitness incrementally.

41

42

6

Experimental Results

In this chapter we report the results obtained by the heuristics explained in the previous
chapters. We also compare our results against the ones of the top five winners of the ITC
2007 contest, as well as with those of more up to date approaches.

The SA parameters are:

• TMax = 0.1→ Maximum/initial temperature;
• TMin = 1e-06→ Minimum temperature;
• reps = 5→ Number of repetitions per temperature;
• rate = computed automatically using Algorithm4→ Temperature cooling rate.

All the 12 datasets were tested by running the algorithm on each dataset 20 times. Table 6.1
presents the obtained results, showing the values for the average fitness, fitness’ best and
worst values, its standard deviation, and the average of feasible and unfeasible generated
neighbors. Compared to the previous approaches, which excludes the use of incremental
fitness computing and the real time computed rate, these results are noticeable better, as
can be seen in Table 6.2.

While analyzing the results, it was noticed that some runs produced results very far from
the average results for the given dataset. As can be seen in Table 6.1, the datasets 2, 5, 6, 8,
10, and 12 have the worst fitness deviating from the average fitness compared to the other
datasets. The fitness standard deviation itself, in these datasets, is much smaller compared
to the distance between the average fitness and the worst fitness of the 20 runs. On the
20 runs for these datasets, only one or two had this kind of results. We believe this rarely
happens because of the problem specified in Subsection 5.3.2, the fact that examinations
with coincidence hard constraints cannot be moved, it limits the algorithm performance to
get better results.

In Table 6.3 we compare the results obtained in this project’s approach with the five winners
of the ITC 2007. Our approach is based on Müller’s [14] approach, however the results are
not as good as his, and this might be because of the use of the GD heuristic in his approach
and differences on the neighborhood and on the initialization procedure. In some datasets,

43

Table 6.1: Obtained results for the proposed SA hybrid algorithm. “–” indicates that a feasi-
ble solution could not be obtained.

Average Best Worst Fitness # Feasible # Unfeasible
Dataset Fitness Fitness Fitness Standard Generated Generated

Deviation Neighbors Neighbors

1 5019 4857 5307 123 2 004 135 12 937 397
2 478 451 921 102 3 220 534 4 953 314
3 14 997 13 375 17 755 1121 663 246 4 169 914
4 – – – – – –
5 4950 3965 7737 1003 2 273 723 8 970 543
6 27 680 26 665 30 145 828 2 105 394 14 922 008
7 4799 4576 5448 282 1 732 856 3 423 649
8 8551 8238 11 670 687 1 889 858 6 006 218
9 1141 1033 1300 70 4 610 766 18 751 578

10 28 219 19 858 38 698 4778 768 633 9 663 356
11 45 344 39 150 53 611 4113 561 047 4 888 157
12 7222 6109 12 033 1684 2 287 229 24 911 726

Table 6.2: Comparison of the fitness results of the current approach with the previous ap-
proach. The best solutions are in boldface. “–” indicates that a feasible solution could not be
obtained.

Dataset Previous Current Improvement
approach approach Factor (%)

1 6934 5019 +27.6
2 821 478 +41.8
3 24 627 14997 +39.1
4 – – –
5 7729 4950 +36.0
6 30 195 27680 +8.3
7 8089 4799 +40.7
8 11 067 8551 +22.7
9 1448 1141 +21.2

10 35 698 28219 +21.0
11 72 751 45344 +37.7
12 8049 7222 +10.3∑

207 408 148 400 +306.4

however, the developed approach was able to reach and beat most of the contestants. We
can also observe that the datasets with the highest scores, and so represent the ones with
worst results, are the ones that have more exam_coincident hard constraints. We believe
that by solving this approach limitation mentioned above, would improve the algorithm re-
sults.

In Table 6.4, our algorithm’s results are compared to more up to date approaches. As can
be seen, Rahman et al. [39], Bryce et al. [38], and Mouhoub et al. [37] beat almost all the

44

Table 6.3: Comparison of the proposed approach with the ITC 2007 finalists. The comparison
is made between the average values of each approach. The best solutions are in boldface.
“–” indicates that a feasible solution could not be obtained.

Dataset Müller Gogos et al. Atsuta et al. De Smet Pillay Proposed
2009 [14] 2012 [19] 2007 [20] 2008 [4] 2008 [22] Approach 2015

1 4370 5905 8006 6670 12 035 5019
2 400 1008 3470 623 3074 478
3 10049 13 862 18 622 – 15 917 14 997
4 18141 18 674 22 559 – 23 582 –
5 2988 4139 4714 3847 6860 4950
6 26950 27 640 29 155 27 815 32 250 27 680
7 4213 6683 10 473 5420 17 666 4799
8 7861 10 521 14 317 – 16 184 8551
9 1047 1159 1737 1288 2055 1141

10 16 682 – 15 085 14778 17 724 28 219
11 34129 43 888 – – 40 535 45 344
12 5535 – 5264 – 6310 7222

Table 6.4: Comparison of the proposed approach with state-of-the-art approaches. The com-
parison is made between the average values of each approach. The best solutions are
in boldface. “–” indicates that a feasible solution could not be obtained, or the following
datasets were not tested.

Dataset Rahman et al. Bryce et al. Mouhoub et al. De Smet Abdullah et al. Proposed
2014 [40] 2014 [38] 2014 [37] 2014 [36] 2014 [35] Approach 2015

1 5231 5302 4395 6235 5517 5019
2 433 418 433 2974 537 478
3 9265 10 036 10 118 15 832 10 324 14 997
4 17 787 20 531 21 772 35 106 16589 –
5 3083 3236 2836 4873 3631 4950
6 26060 26 253 27 166 31 756 26 275 27 680
7 10 712 4115 4294 11 562 4592 4799
8 12 713 7555 7632 20 994 8328 8551
9 1111 1089 1109 – – 1141

10 14825 15 167 17 022 – – 28 219
11 28891 31 415 33 608 – – 45 344
12 6181 5464 6364 – – 7222

best results. Some of Rahman’s [39] and Bryce’s results surpass Müller’s [14] results. None
of the datasets’ score of our approach was able to beat all the other approaches shown on
the table.

One interesting test would be to run the created approach allowing it to run for a large
period of time, not considering the time limit. The SA heuristic should obtain better results
compared to the 221 seconds time limit tests. Table 6.5 reports the comparison of the origi-

45

Table 6.5: Results with different time constraints. The best solutions are in boldface. “–”
indicates that a feasible solution could not be obtained.

Dataset 221 seconds 12 hours
fitness fitness

1 5019 3784
2 478 385
3 14 997 12928
4 – –
5 4950 3681
6 27 680 25890
7 4799 3260
8 8551 7011
9 1141 978

10 28 219 19734
11 45 344 31366
12 7222 5580

nal tests with time limit, with tests that took 12 hours for each dataset. It can be seen that
for all the datasets, the 12 hours tests, the algorithm obtained better results.

46

7

Conclusions

In this project, an algorithm to solve the timetabling problem, was proposed. It was the main
objective to use the problem described in the ITC 2007, and so the instances presented in
this competition were used. The developed algorithm utilizes an hybridization of heuristics
(GC) and meta-heuristics (SA and HC), to solve the problem.

With the use of this hybrid approach of GC, SA, and HC we’ve reached near the results
of the five finalists of the ITC 2007 on most of the datasets. In some datasets, we were able
to be right before Müller’s results, the winner of the competition.

Our results were compared against the top five contestants of the competition, as well as
with state-of-the-art approaches. These latter approaches were able to beat Müller’s results
on most of the datasets, but Müller’s approach can still get very good results on all the
datasets. Müller’s results contrast with some approaches that can beat his results on some
datasets but get much worse results on others.

We can conclude that the SA works as predicted, getting much better results on most of the
datasets when executed for much more time. Running the current approach for 12 hours,
yielded better results, as compared to Müller’s and some recent approaches.

7.1 Future Work

There are different approaches to be tested with the implemented approach in order to im-
prove the results. Some new approaches may include the use of more heuristics with the
SA and HC, such as GD. One improvement that must be implemented in order to get better
results is editing the implemented SA and make it able to move more than one examination
at each time, to allow examinations with exam_coincidence hard constraint to be moved. It
is expected that after implementing this improvement, the number of rejected moves might
get lower, leading to produce better results.

An extensive study should take place, in order to try and find feasible solutions for the
dataset 4. To reach this goal, different approaches should be implemented and tested using
the GC.

47

48

References

1. E. Talbi, Metaheuristics - From Design to Implementation. Wiley, 2009.
2. S. Abdullah and H. Turabieh, “On the use of multi neighbourhood structures within a tabu-based

memetic approach to university timetabling problems,” Information Sciences, vol. 191, pp. 146 –
168, May 2012. Data Mining for Software Trustworthiness.

3. S. Kirkpatrick, D. Gelatt, and M. Vecchi, “Optimization by simmulated annealing,” Science,
vol. 220, no. 4598, pp. 671–680, 1983.

4. G. Smet, “Drools-solver.” http://www.cs.qub.ac.uk/itc2007/winner/bestexamsolutions/
Geoffrey_De_smet_examination_description.pdf, 2007.

5. A. Schaerf, “A survey of automated timetabling,” Artif. Intell. Rev., vol. 13, no. 2, pp. 87–127, 1999.
6. T. Jensen, Graph Coloring Problems. John Wiley & Sons, Inc., 2001.
7. S. Arora and B. Barak, Computational Complexity - A Modern Approach. Cambridge University

Press, 2009.
8. R. Qu, E. Burke, B. McCollum, L. Merlot, and S. Lee, “A survey of search methodologies and

automated system development for examination timetabling,” J. Scheduling, vol. 12, no. 1, pp. 55–
89, 2009.

9. R. Lewis, “A survey of metaheuristic-based techniques for university timetabling problems,” OR
Spectrum Volume 30, Issue 1 , pp 167-190, 2007.

10. P. Boizumault, Y. Delon, and L. Peridy, “Constraint logic programming for examination
timetabling,” The Journal of Logic Programming, vol. 26, no. 2, pp. 217 – 233, 1996.

11. S. Al-Yakoob, H. Sherali, and M. Al-Jazzaf, “A mixed-integer mathematical modeling approach to
exam timetabling,” Computational Management Science, vol. 7, no. 1, pp. 19–46, 2010.

12. M. Carter, G. Laporte, and S. Lee, “Examination timetabling: Algorithmic strategies and applica-
tions,” The Journal of the Operational Research Society, vol. 47, pp. 373 – 383, Mar. 1996. 1996.

13. B. McCollum, “ITC2007 examination evaluation function.” http://www.cs.qub.ac.uk/itc2007/
examtrack/exam_track_index_files/examevaluation.htm, 2007.

14. T. Müller, “ITC2007 solver description: A hybrid approach,” Annals of Operations Research,
vol. 172, no. 1, pp. 429–446, 2009.

15. T. Müller, Constraint-Based Timetabling. PhD thesis, Charles University in Prague Faculty of
Mathematics and Physics, 2005.

16. T. Müller, R. Barták, and H. Rudová, “Conflict-based statistics,” tech. rep., Faculty of Mathematics
and Physics, Charles University Malostranské nám. 2/25, Prague, Czech Republic, 2004.

17. S. Russell and P. Norvig, Artificial Intelligence - A Modern Approach (3. internat. ed.). Pearson
Education, 2010.

18. G. Dueck, “New optimization heuristics: The great deluge algorithm and the record-to-record
travel,” Journal of Computational Physics, vol. 104, pp. 86 – 92, January 1993.

19. C. Gogos, P. Alefragis, and E. Housos, “An improved multi-staged algorithmic process for the
solution of the examination timetabling problem,” Annals of Operations Research, vol. 194, no. 1,
pp. 203–221, 2012.

49

20. M. Atsuta, K. Nonobe, and T. Ibaraki, “ITC-2007 track2: An approach using general csp solver,”
tech. rep., Kwansei-Gakuin University, School of Science and Technology, Tokyo, Japan, 2007.

21. J. Drools, “Drools planner user guide.” http://docs.jboss.org/drools/release/5.4.0.Final/
drools-planner-docs/html_single/.

22. N. Pillay, “A developmental approach to the examination timetabling problem.” http://www.cs.
qub.ac.uk/itc2007/winner/bestexamsolutions/pillay.pdf, 2007.

23. S. Abdullah, H. Turabieh, and B. McCollum, “A hybridization of electromagnetic-like mechanism
and great deluge for examination timetabling problems,” in Hybrid Metaheuristics, 6th Interna-
tional Workshop, HM 2009, Udine, Italy, October 16-17, 2009. Proceedings (M. J. Blesa, C. Blum,
L. D. Gaspero, A. Roli, M. Sampels, and A. Schaerf, eds.), vol. 5818 of Lecture Notes in Computer
Science, pp. 60–72, Springer, 2009.

24. N. Javadian, M. Alikhani, and R. Tavakkoli-Moghaddam, “A discrete binary version of the
electromagnetism-like heuristic for solving traveling salesman problem,” in Advanced Intelligent
Computing Theories and Applications. With Aspects of Artificial Intelligence, 4th International
Conference on Intelligent Computing, ICIC 2008, Shanghai, China, September 15-18, 2008, Pro-
ceedings (D. Huang, D. C. W. II, D. S. Levine, and K. Jo, eds.), vol. 5227 of Lecture Notes in
Computer Science, pp. 123–130, Springer, 2008.

25. B. McCollum, P. McMullan, A. Parkes, E. Burke, and S. Abdullah, “An extended great deluge ap-
proach to the examination timetabling problem,” in Proceedings of the 4th Multidisciplinary Inter-
national Scheduling Conference: Theory and Applications (MISTA 2009), 10-12 Aug 2009, Dublin,
Ireland (J. Blazewicz, M. Drozdowski, G. Kendall, and B. McCollum, eds.), pp. 424–434, 2009.

26. E. Burke and J. Newall, “Solving examination timetabling problems through adaption of heuristic
orderings,” Annals of Operations Research, vol. 129, no. 1-4, pp. 107–134, 2004.

27. M. Alzaqebah and S. Abdullah, “Hybrid artificial bee colony search algorithm based on disruptive
selection for examination timetabling problems,” in Combinatorial Optimization and Applications
- 5th International Conference, COCOA 2011, Zhangjiajie, China, August 4-6, 2011. Proceedings
(W. Wang, X. Zhu, and D. Du, eds.), vol. 6831 of Lecture Notes in Computer Science, pp. 31–45,
Springer, 2011.

28. H. Turabieh and S. Abdullah, “An integrated hybrid approach to the examination timetabling prob-
lem,” Omega, vol. 39, no. 6, pp. 598 – 607, 2011.

29. P. Demeester, B. Bilgin, P. Causmaecker, and G. Berghe, “A hyperheuristic approach to examination
timetabling problems: benchmarks and a new problem from practice,” J. Scheduling, vol. 15, no. 1,
pp. 83–103, 2012.

30. E. Burke and Y. Bykov, “A late acceptance strategy in hill-climbing for examination timetabling
problems,” in Proceedings of the conference on the Practice and Theory of Automated
Timetabling, 2008.

31. B. McCollum, P. McMullan, A. Parkes, E. Burke, and R. Qu, “A new model for automated examina-
tion timetabling,” Annals of Operations Research, vol. 194, no. 1, pp. 291–315, 2012.

32. N. Sabar, M. Ayob, R. Qu, and G. Kendall, “A graph coloring constructive hyper-heuristic for ex-
amination timetabling problems,” Applied Intelligence, vol. 37, no. 1, pp. 1–11, 2012.

33. N. Sabar, M. Ayob, G. Kendall, and R. Qu, “A honey-bee mating optimization algorithm for educa-
tional timetabling problems,” European Journal of Operational Research, vol. 216, no. 3, pp. 533–
543, 2012.

34. S. Abdullah and M. Alzaqebah, “A hybrid self-ddaptive bees algorithm for examination timetabling
problems,” Applied Soft Computinglr, vol. 13, no. 8, pp. 3608–3620, 2013.

35. M. Alzaqebah and S. Abdullah, “An adaptive artificial bee colony and late-acceptance hill-climbing
algorithm for examination timetabling,” J. Scheduling, vol. 17, no. 3, pp. 249–262, 2014.

36. E. Burke, R. Qu, and A. Soghier, “Adaptive selection of heuristics for improving exam timetables,”
Annals of Operations Research, vol. 218, no. 1, pp. 129–145, 2014.

37. A. Hmer and M. Mouhoub, “A multi-phase hybrid metaheuristics approach for the exam
timetabling,” Department of Computer Science University of Regina Regina, Canada, 2014.

50

38. R. Hamilton-Bryce, P. McMullan, and B. McCollum, “Directed selection using reinforcement learn-
ing for the examination timetabling problem,” 10th International Conference of the Practice and
Theory of Automated Timetabling, pp. 218 – 232, August 2014.

39. S. Rahman, E. Burke, A. Bargiela, B. McCollum, and E. Özcan, “A constructive approach to ex-
amination timetabling based on adaptive decomposition and ordering,” Annals of Operations Re-
search, vol. 218, no. 1, pp. 3–21, 2014.

40. S. Rahman, A. Bargiela, E. Burke, E. Özcan, B. McCollum, and P. McMullan, “Adaptive linear
combination of heuristic orderings in constructing examination timetables,” European Journal of
Operational Research, vol. 232, no. 2, pp. 287–297, 2014.

41. B. McCollum, “ITC2007 examination output format.” http://www.cs.qub.ac.uk/itc2007/
examtrack/exam_track_index_files/outputformat.htm, 2007.

42. B. McCollum, “ITC2007 examination validator.” http://www.cs.qub.ac.uk/itc2007/examtrack/
exam_track_index_files/validation.htm, 2007.

43. B. McCollum, “ITC2007 examination input format.” http://www.cs.qub.ac.uk/itc2007/
examtrack/exam_track_index_files/Inputformat.htm, 2007.

44. B. McCollum, “ITC2007 examination benchmarking.” http://www.cs.qub.ac.uk/itc2007/
index_files/benchmarking.htm, 2007.

45. P. Carvalho, “Lecture notes in evolutionary computation.” Instituto Superior Técnico, November
2004.

51

