184 research outputs found

    POTENTIAL GAMES WITH AGGREGATION IN NON-COOPERATIVE GENERAL INSURANCE MARKETS

    Get PDF
    AbstractIn the global insurance market, the number of product-specific policies from different companies has increased significantly, and strong market competition has boosted the demand for a competitive premium. Thus, in the present paper, by considering the competition between each pair of insurers, an N-player game is formulated to investigate the optimal pricing strategy by calculating the Nash equilibrium in an insurance market. Under that framework, each insurer is assumed to maximise its utility of wealth over the unit time interval. With the purpose of solving a game of N-players, the best-response potential game with non-linear aggregation is implemented. The existence of a Nash equilibrium is proved by finding a potential function of all insurers' payoff functions. A 12-player insurance game illustrates the theoretical findings under the framework in which the best-response selection premium strategies always provide the global maximum value of the corresponding payoff function.</jats:p

    A high order finite element scheme for pricing options under regime switching jump diffusion processes

    Get PDF
    This paper considers the numerical pricing of European, American and Butterfly options whose asset price dynamics follow the regime switching jump diffusion process. In an incomplete market structure and using the no-arbitrage pricing principle, the option pricing problem under the jump modulated regime switching process is formulated as a set of coupled partial integro-differential equations describing different states of a Markov chain. We develop efficient numerical algorithms to approximate the spatial terms of the option pricing equations using linear and quadratic basis polynomial approximations and solve the resulting initial value problem using exponential time integration. Various numerical examples are given to demonstrate the superiority of our computational scheme with higher level of accuracy and faster convergence compared to existing methods for pricing options under the regime switching model

    Pricing and Simulating Catastrophe Risk Bonds in a Markov-dependent Environment

    Get PDF
    At present, insurance companies are seeking more adequate liquidity funds to cover the insured property losses related to natural and manmade disasters. Past experience shows that the losses caused by catastrophic events, such as earthquakes, tsunamis, floods, or hurricanes, are extremely high. An alternative method for covering these extreme losses is to transfer part of the risk to the financial markets by issuing catastrophe-linked bonds. In this paper, we propose a contingent claim model for pricing catastrophe risk bonds (CAT bonds). First, using a two-dimensional semi-Markov process, we derive analytical bond pricing formulae in a stochastic interest rate environment with aggregate claims that follow compound forms, where the claim inter-arrival times are dependent on the claim sizes. Furthermore, we obtain explicit CAT bond prices formulae in terms of four different payoff functions. Next, we estimate and calibrate the parameters of the pricing models using catastrophe loss data provided by Property Claim Services from 1985 to 2013. Finally, we use Monte Carlo simulations to analyse the numerical results obtained with the CAT bond pricing formulae

    Linear Radom Vibration of Structural Systems with Singular Mass Matrices

    Get PDF
    A framework is developed for determining the stochastic response of linear multi-degree-of-freedom (MDOF) structural systems with singular matrices. This system modeling can arise when using more than the minimum number of coordinates, and can be advantageous, for instance, in cases of complex multibody systems whose dynamics satisfy a number of constraints. In such cases the explicit formulation of the equations of motion can be a nontrivial task, whereas the introduction of additional/redundant degrees of freedom can facilitate the formulation of the equations of motion in a less labor-intensive manner. Relying on the generalized matrix inverse theory and on the Moore-Penrose (M-P) matrix inverse, standard concepts, relationships, and equations of the linear random vibration theory are extended and generalized herein to account for systems with singular matrices. Adopting a state-variable formulation, equations governing the system response mean vector and covariance matrix are formed and solved. Further, it is shown that a complex modal analysis treatment, unlike the standard system modeling case, does not lead to decoupling of the equations of motion. However, relying on a singular value decomposition of the system transition matrix significantly facilitates the efficient computation of the system response statistics. A linear structural system with singular matrices is considered as a numerical example for demonstrating the applicability of the methodology and for elucidating certain related numerical aspects

    Disappointment aversion and the equity premium puzzle: new international evidence

    Get PDF
    Drawing upon the seminal study of Ang, Bekaert, and Liu [2005. “Why Stock May Disappoint?” Journal of Financial Economics 76 (3): 471–508], we incorporate disappointment aversion (DA, that is, aversion to outcomes that are worse than prior expectations) within a simple theoretical portfolio-choice model. Based on the results of this model, we then empirically address the portfolio allocation problem of an investor who chooses between a risky and a risk-free asset using international data from 19 countries. Our findings strongly support the view that DA leads investors to reduce their exposure to the stock market (i.e. DA significantly depresses the portfolio weights on equities in all cases considered). Overall, our study shows that in addition to risk aversion, DA plays an important role in explaining the equity premium puzzle around the world
    corecore