124 research outputs found

    The Early Psychosis Screener (EPS): Quantitative validation against the SIPS using machine learning

    Get PDF
    Machine learning techniques were used to identify highly informative early psychosis self-report items and to validate an early psychosis screener (EPS) against the Structured Interview for Psychosis-risk Syndromes (SIPS). The Prodromal Questionnaire–Brief Version (PQ-B) and 148 additional items were administered to 229 individuals being screened with the SIPS at 7 North American Prodrome Longitudinal Study sites and at Columbia University. Fifty individuals were found to have SIPS scores of 0, 1, or 2, making them clinically low risk (CLR) controls; 144 were classified as clinically high risk (CHR) (SIPS 3–5) and 35 were found to have first episode psychosis (FEP) (SIPS 6). Spectral clustering analysis, performed on 124 of the items, yielded two cohesive item groups, the first mostly related to psychosis and mania, the second mostly related to depression, anxiety, and social and general work/school functioning. Items within each group were sorted according to their usefulness in distinguishing between CLR and CHR individuals using the Minimum Redundancy Maximum Relevance procedure. A receiver operating characteristic area under the curve (AUC) analysis indicated that maximal differentiation of CLR and CHR participants was achieved with a 26-item solution (AUC = 0.899 ± 0.001). The EPS-26 outperformed the PQ-B (AUC = 0.834 ± 0.001). For screening purposes, the self-report EPS-26 appeared to differentiate individuals who are either CLR or CHR approximately as well as the clinician-administered SIPS. The EPS-26 may prove useful as a self-report screener and may lead to a decrease in the duration of untreated psychosis. A validation of the EPS-26 against actual conversion is underway

    The Early Psychosis Screener (EPS): Item development and qualitative validation

    Get PDF
    A panel of experts assembled and analyzed a comprehensive item bank from which a highly sensitive and specific early psychosis screener could be developed. Twenty well-established assessments relating to the prodromal stage, early psychosis, and psychosis were identified. Using DSM-5 criteria, we identified the core concepts represented by each of the items in each of the assessments. These granular core concepts were converted into a uniform set of 490 self-report items using a Likert scale and a ‘past 30 days’ time frame. Partial redundancy was allowed to assure adequate concept coverage. A panel of experts and TeleSage staff rated these items and eliminated 189 items, resulting in 301 items. The items were subjected to five rounds of cognitive interviewing with 16 individuals at clinically high risk for psychosis and 26 community mental health center patients. After each round, the expert panel iteratively reviewed, rated, revised, added, or deleted items to maximize clarity and centrality to the concept. As a result of the interviews, 36 items were revised, 52 items were added, and 205 items were deleted. By the last round of cognitive interviewing, all of the items were clearly understood by all participants. In future work, responses to the final set of 148 items and machine learning techniques will be used to quantitatively identify the subset of items that will best predict clinical high-risk status and conversion

    Experimental study of the hydrodynamic behaviour of slug flow in a horizontal pipe

    Get PDF
    This paper investigates the unsteady hydrodynamic behaviour of slug flow occurring within an air–silicone oil mixture, within a horizontal 67 mm internal diameter pipe. A series of slug flow regime experiments were performed for a range of injected air superficial velocities (0.29–1.4 m s−1) and for liquid flows with superficial velocities of between 0.05–0.47 m s−1. A pair of Electrical Capacitance Tomography (ECT) probes was used to determine: the slug translational velocities of the elongated bubbles and liquid slugs, the slug frequencies, the lengths of elongated bubbles and the liquid slugs, the void fractions within the elongated bubbles and liquid slugs. The pressure drop experienced along the pipe was measured using a differential pressure transducer cell (DP cell). A comparative analysis of the current experimental data and that previously published experimental confirms good agreement

    The Early Psychosis Screener for Internet (EPSI)-SR: Predicting 12 month psychotic conversion using machine learning

    Get PDF
    Introduction: A faster and more accurate self-report screener for early psychosis is needed to promote early identification and intervention. Methods: Self-report Likert-scale survey items were administered to individuals being screened with the Structured Interview for Psychosis-risk Syndromes (SIPS) and followed at eight early psychosis clinics. An a priori analytic plan included Spectral Clustering Analysis to reduce the item pool, followed by development of Support Vector Machine (SVM) classifiers. Results: The cross-validated positive predictive value (PPV) of the EPSI at the default cut-off (76.5%) exceeded that of the clinician-administered SIPS (68.5%) at separating individuals who would not convert to psychosis within 12 months from those who either would convert within 12 months or who had already experienced a first episode psychosis (FEP). When used in tandem with the SIPS on clinical high risk participants, the EPSI increased the combined PPV to 86.6%. The SVM classified as FEP/converters only 1% of individuals in non-clinical and 4% of clinical low risk populations. Sensitivity of the EPSI, however, was 51% at the default cut-off. Discussion: The EPSI identifies, comparably to the SIPS but in less time and with fewer resources, individuals who are either at very high risk to develop a psychotic disorder within 12 months or who are already psychotic. At its default cut-off, EPSI misses 49% of current or future psychotic cases. The cut-off can, however, be adjusted based on purpose. The EPSI is the first validated assessment to predict 12-month psychotic conversion. An online screening system, www.eps.telesage.org, is under development

    Magnetic Field Generation in Stars

    Get PDF
    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a new era of exciting discoveries in compact star magnetism driven by the opening of a new, non-electromagnetic observational window. We also review recent advances in the theory and computation of magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo theory. These advances offer insight into the action of stellar dynamos as well as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field generation in stars to appear in Space Science Reviews, Springe

    Solar parameters for modeling interplanetary background

    Full text link
    The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE) Working Team of the International Space Science Institute in Bern, Switzerland, was to establish a common calibration of various UV and EUV heliospheric observations, both spectroscopic and photometric. Realization of this goal required an up-to-date model of spatial distribution of neutral interstellar hydrogen in the heliosphere, and to that end, a credible model of the radiation pressure and ionization processes was needed. This chapter describes the solar factors shaping the distribution of neutral interstellar H in the heliosphere. Presented are the solar Lyman-alpha flux and the solar Lyman-alpha resonant radiation pressure force acting on neutral H atoms in the heliosphere, solar EUV radiation and the photoionization of heliospheric hydrogen, and their evolution in time and the still hypothetical variation with heliolatitude. Further, solar wind and its evolution with solar activity is presented in the context of the charge exchange ionization of heliospheric hydrogen, and in the context of dynamic pressure variations. Also the electron ionization and its variation with time, heliolatitude, and solar distance is presented. After a review of all of those topics, we present an interim model of solar wind and the other solar factors based on up-to-date in situ and remote sensing observations of solar wind. Results of this effort will further be utilised to improve on the model of solar wind evolution, which will be an invaluable asset in all heliospheric measurements, including, among others, the observations of Energetic Neutral Atoms by the Interstellar Boundary Explorer (IBEX).Comment: Chapter 2 in the planned "Cross-Calibration of Past and Present Far UV Spectra of Solar System Objects and the Heliosphere", ISSI Scientific Report No 12, ed. R.M. Bonnet, E. Quemerais, M. Snow, Springe

    Astronomical Distance Determination in the Space Age: Secondary Distance Indicators

    Get PDF
    The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore