26 research outputs found

    Is a Cumulative Exposure to a Background Aerosol of Nanoparticles Part of the Causal Mechanism of Aerotoxic Syndrome?

    Get PDF
    We present strong evidence for the presence of aerosols of Nano-particles (also termed Ultrafine Particles (UFPs) in aerosol science) in the breathing air of commercial aircraft using engine bleed air architecture. The physical and chemical nature of engine oils and the high temperatures attained in aircraft jet engines (up to 1700°C in the oil circulation and up to 30,000°C in the bearings) explain why UFPs are to be expected. A discussion of oil seals used in gas turbine engines concludes that they will permit UFPs to cross them and enter the breathing air supply, in conjunction with a complex mixture of chemicals such triaryl phosphates which are neurotoxic. A consideration of the toxicology of Nano-particles concludes that their continual presence over a typical working lifetime of up to 20,000 hours in aircrew will predispose them to chronic respiratory problems and will exacerbate the translocation of neurotoxic substances across the blood brain barrier

    Is a Cumulative Exposure to a Background Aerosol of Nanoparticles Part of the Causal Mechanism of Aerotoxic Syndrome?

    Get PDF
    We present strong evidence for the presence of aerosols of Nano-particles (also termed Ultrafine Particles (UFPs) in aerosol science) in the breathing air of commercial aircraft using engine bleed air architecture. The physical and chemical nature of engine oils and the high temperatures attained in aircraft jet engines (up to 1700°C in the oil circulation and up to 30,000°C in the bearings) explain why UFPs are to be expected. A discussion of oil seals used in gas turbine engines concludes that they will permit UFPs to cross them and enter the breathing air supply, in conjunction with a complex mixture of chemicals such triaryl phosphates which are neurotoxic. A consideration of the toxicology of Nano-particles concludes that their continual presence over a typical working lifetime of up to 20,000 hours in aircrew will predispose them to chronic respiratory problems and will exacerbate the translocation of neurotoxic substances across the blood brain barrier

    Novel sensor technology integration for outcome-based risk analysis in diabetes

    Get PDF
    Novel sensor-based continuous biomedical monitoring technologies have a major role in chronic disease management for early detection and prevention of known adverse trends. In the future, a diversity of physiological, biochemical and mechanical sensing principles will be available through sensor device 'ecosystems'. In anticipation of these sensor-based ecosystems, we have developed Healthcare@Home (HH) - a research-phase generic intervention-outcome monitoring framework. HH incorporates a closed-loop intervention effect analysis engine to evaluate the relevance of measured (sensor) input variables to system-defined outcomes. HH offers real-world sensor type validation by evaluating the degree to which sensor-derived variables are relevant to the predicted outcome. This 'index of relevance' is essential where clinical decision support applications depend on sensor inputs. HH can help determine system-integrated cost-utility ratios of bespoke sensor families within defined applications - taking into account critical factors like device robustness / reliability / reproducibility, mobility / interoperability, authentication / security and scalability / usability. Through examples of hardware / software technologies incorporated in the HH end-to-end monitoring system, this paper discusses aspects of novel sensor technology integration for outcome-based risk analysis in diabetes

    Travel Writing and Rivers

    Get PDF

    Evaluation of Biophotonic Imaging To Estimate Bacterial Burden in Mice Infected with Highly Virulent Compared to Less Virulent Streptococcus pneumoniae Serotypes▿ †

    No full text
    Bioluminescence imaging is an innovative, noninvasive tool to analyze infectious disease progression under real-life conditions in small laboratory animals. However, the relevance of bioluminescence imaging to monitor invasive compared to noninvasive bacterial infections of the lung has not been examined so far. In the current study, we systematically evaluated the importance of bioluminescence imaging to monitor pneumococcal disease progression by correlating biophotonic signals with lung bacterial loads in two mouse strains (BALB/c, C57BL/6) infected with either self-glowing, bioluminescent serotype 19 Streptococcus pneumoniae causing focal pneumonia or serotype 2 S. pneumoniae causing invasive pneumococcal disease. The best correlations between bioluminescence signals and lung CFU counts were observed in BALB/c mice compared to C57BL/6 mice just on day 3 after infection with invasive serotype 2 S. pneumoniae, while excellent correlations between photon counts and bacterial loads were observed in isolated lungs of BALB/c and C57BL/6 mice, irrespective of the employed pneumococcal serotype. Moreover, good correlations between biophotonic signals and CFU counts were also observed in mice upon infection with serotype 19 S. pneumoniae causing focal pneumonia in mice, again with best correlation values obtained for BALB/c mice at day 3 postinfection. Collectively, we show that the relevance of biophotonic imaging to monitor S. pneumoniae-induced lung infections in mice is largely influenced by the disease model under investigation. The provided data may be important for studies of infectious diseases

    Efficacy Profiles of Daptomycin for Treatment of Invasive and Noninvasive Pulmonary Infections with Streptococcus pneumoniae▿

    No full text
    Daptomycin is a novel lipopeptide antibiotic with excellent activity against Gram-positive bacterial pathogens, but its therapeutic value for the treatment of invasive pneumococcal disease compared to that for the treatment of pneumococcal pneumonia is incompletely defined. We investigated the efficacy of daptomycin in two models of Streptococcus pneumoniae-induced lung infection, i.e., pneumococcal pneumonia and septic pneumococcal disease. Mice were infected with a bioluminescent, invasive serotype 2 S. pneumoniae strain or a less virulent serotype 19 S. pneumoniae strain and were then given semitherapeutic or therapeutic daptomycin or ceftriaxone. Readouts included survival; bacterial loads; and septic disease progression, as determined by biophotonic imaging. Semitherapeutic daptomycin treatment fully protected the mice against the progression of septic disease induced by serotype 2 S. pneumoniae, while therapeutic treatment of the mice with daptomycin or ceftriaxone led to ∼70% or ∼60% survival, respectively. In contrast, mice infected with serotype 19 S. pneumoniae developed severe pneumonia and lung leakage even in the presence of increased intra-alveolar daptomycin levels, resulting in only 40% survival, whereas the ceftriaxone-treated mice had 100% survival. Together, although daptomycin demonstrates little efficacy in the treatment of pneumococcal pneumonia, daptomycin is highly effective in preventing S. pneumoniae-induced septic death, thus possibly offering a therapeutic option for patients with life-threatening septic pneumococcal disease

    Health consequences of exposure to aircraft contaminated air and fume events: a narrative review and medical protocol for the investigation of exposed aircrew and passengers

    Get PDF
    Abstract Thermally degraded engine oil and hydraulic fluid fumes contaminating aircraft cabin air conditioning systems have been well documented since the 1950s. Whilst organophosphates have been the main subject of interest, oil and hydraulic fumes in the air supply also contain ultrafine particles, numerous volatile organic hydrocarbons and thermally degraded products. We review the literature on the effects of fume events on aircrew health. Inhalation of these potentially toxic fumes is increasingly recognised to cause acute and long-term neurological, respiratory, cardiological and other symptoms. Cumulative exposure to regular small doses of toxic fumes is potentially damaging to health and may be exacerbated by a single higher-level exposure. Assessment is complex because of the limitations of considering the toxicity of individual substances in complex heated mixtures. There is a need for a systematic and consistent approach to diagnosis and treatment of persons who have been exposed to toxic fumes in aircraft cabins. The medical protocol presented in this paper has been written by internationally recognised experts and presents a consensus approach to the recognition, investigation and management of persons suffering from the toxic effects of inhaling thermally degraded engine oil and other fluids contaminating the air conditioning systems in aircraft, and includes actions and investigations for in-flight, immediately post-flight and late subsequent follow up
    corecore