198 research outputs found

    Therapeutic alternatives in chronic thromboembolic pulmonary hypertension: from pulmonary endarterectomy to balloon pulmonary angioplasty to medical therapy. State of the art from a multidisciplinary team

    Get PDF
    Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare disease with a very complex pathophysiology differing from other causes of pulmonary hypertension (PH). It is an infrequent consequence of acute pulmonary embolism that is frequently misdiagnosed. Pathogenesis has been related to coagulation abnormalities, infection or inflammation, although these disturbances can be absent in many cases. The hallmarks of CTEPH are thrombotic occlusion of pulmonary vessels, variable degree of ventricular dysfunction and secondary microvascular arteriopathy. The definition of CTEPH also includes an increase in mean pulmonary arterial pressure of more than 25 mmHg with a normal pulmonary capillary wedge of less than 15 mmHg. It is classified as World Health Organization group 4 PH, and is the only type that can be surgically cured by pulmonary endarterectomy (PEA). This operation needs to be carried out by a team with strong expertise, from the diagnostic and decisional pathway to the operation itself. However, because the disease has a very heterogeneous phenotype in terms of anatomy, degree of PH and the lack of a standard patient profile, not all cases of CTEPH can be treated by PEA. As a result, PH-directed medical therapy traditionally used for the other types of PH has been proposed and is utilized in CTEPH patients. Since 2015, we have been witnessing the rebirth of balloon pulmonary angioplasty, a technique first performed in 2001 but has since fallen out fashion due to major complications. The refinement of such techniques has allowed its safe utilization as a salvage therapy in inoperable patients. In the present keynote lecture, we will describe these therapeutic approaches and results

    Brivaracetam as Early Add-On Treatment in Patients with Focal Seizures: A Retrospective, Multicenter, Real-World Study

    Get PDF
    Introduction In randomized controlled trials, add-on brivaracetam (BRV) reduced seizure frequency in patients with drug-resistant focal epilepsy. Most real-world research on BRV has focused on refractory epilepsy. The aim of this analysis was to assess the 12-month effectiveness and tolerability of adjunctive BRV when used as early or late adjunctive treatment in patients included in the BRIVAracetam add-on First Italian netwoRk Study (BRIVAFIRST). Methods BRIVAFIRST was a 12-month retrospective, multicenter study including adult patients prescribed adjunctive BRV. Effectiveness outcomes included the rates of sustained seizure response, sustained seizure freedom, and treatment discontinuation. Safety and tolerability outcomes included the rate of treatment discontinuation due to adverse events (AEs) and the incidence of AEs. Data were compared for patients treated with add-on BRV after 1-2 (early add-on) and >= 3 (late add-on) prior antiseizure medications. Results A total of 1029 patients with focal epilepsy were included in the study, of whom 176 (17.1%) received BRV as early add-on treatment. The median daily dose of BRV at 12 months was 125 (100-200) mg in the early add-on group and 200 (100-200) in the late add-on group (p < 0.001). Sustained seizure response was reached by 97/161 (60.3%) of patients in the early add-on group and 286/833 (34.3%) of patients in the late add-on group (p < 0.001). Sustained seizure freedom was achieved by 51/161 (31.7%) of patients in the early add-on group and 91/833 (10.9%) of patients in the late add-on group (p < 0.001). During the 1-year study period, 29 (16.5%) patients in the early add-on group and 241 (28.3%) in the late add-on group discontinued BRV (p = 0.001). Adverse events were reported by 38.7% and 28.5% (p = 0.017) of patients who received BRV as early and late add-on treatment, respectively. Conclusion Brivaracetam was effective and well tolerated both as first add-on and late adjunctive treatment in patients with focal epilepsy

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of √s=7 TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≥6 to ≥9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for anomalous production of prompt like-sign muon pairs and constraints on physics beyond the standard model with the ATLAS detector

    Get PDF
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMAn inclusive search for anomalous production of two prompt, isolated muons with the same electric charge is presented. The search is performed in a data sample corresponding to 1.6 fb-1 of integrated luminosity collected in 2011 at √s = 7 TeV with the ATLAS detector at the LHC. Muon pairs are selected by requiring two isolated muons of the same electric charge with pT > 20 GeV and |η| < 2.5. Minimal requirements are placed on the rest of the event activity. The distribution of the invariant mass of the muon pair m(μμ) is found to agree well with the background expectation. Upper limits on the cross section for anomalous production of two muons with the same electric charge are placed as a function of m(μμ) within a fiducial region defined by the event selection. The fiducial cross-section limit constrains the like-sign top-quark pair-production cross section to be below 3.7 pb at 95% confidence level. The data are also analyzed to search for a narrow like-sign dimuon resonance as predicted for e.g. doubly charged Higgs bosons (H±±). Assuming pair production of H±± bosons and a branching ratio to muons of 100% (33%), this analysis excludes masses below 355 (244) GeV and 251 (209) GeV for H±± bosons coupling to left-handed and right-handed fermions, respectivelyWe acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFNCNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwid
    corecore