677 research outputs found

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the cross-section for b-jets produced in association with a Z boson at root s=7 TeV with the ATLAS detector ATLAS Collaboration

    Get PDF
    A measurement is presented of the inclusive cross-section for b-jet production in association with a Z boson in pp collisions at a centre-of-mass energy of root s = 7 TeV. The analysis uses the data sample collected by the ATLAS experiment in 2010, corresponding to an integrated luminosity of approximately 36 pb(-1). The event selection requires a Z boson decaying into high P-T electrons or muons, and at least one b-jet, identified by its displaced vertex, with transverse momentum p(T) > 25 GeV and rapidity vertical bar y vertical bar < 2.1. After subtraction of background processes, the yield is extracted from the vertex mass distribution of the candidate b-jets. The ratio of this cross-section to the inclusive Z cross-section (the average number of b-jets per Z event) is also measured. Both results are found to be in good agreement with perturbative QCD predictions at next-to-leading order

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    Search for light top squark pair production in final states with leptons and b -jets with the ATLAS detector in s=7\sqrt{s}=7 TeV proton-proton collisions

    Get PDF
    The results of a search for pair production of light top squarks are presented, using 4.7 fb^-1 of sqrt(s) = 7 TeV proton-proton collisions collected with the ATLAS detector at the Large Hadron Collider. This search targets top squarks with masses similar to, or lighter than, the top quark mass. Final states containing exclusively one or two leptons (e, mu), large missing transverse momentum, light-jets and b-jets are used to reconstruct the top squark pair system. Global mass scale variables are used to separate the signal from a large ttbar background. No excess over the Standard Model expectations is found. The results are interpreted in the framework of the Minimal Supersymmetric Standard Model, assuming the top squark decays exclusively to a chargino and a b-quark. Light top squarks with masses between 123-167 GeV are excluded for neutralino masses around 55 GeV

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s=7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb-1 of sqrt(s) = 7 TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Measurements of branching fractions and dalitz distributions for B-0 ->(DK0)-K-(*)+/-pi(-/+) decays

    Get PDF
    We present measurments of the branching fractions for the three-body decays B-0 -> D((*) -/+)K(0)pi(+/-) and their resonant submodes B0 -> D(*)K-/+*(+/-) usinga sample of approximately 88 x 10(6) B (B) over bar pairs collected by the BABER detector at the SLAC PEP-II assymetric energy storage ring. We measure: B(B-0-> D(-/+)K(0)pi(+/-)) = (4.9 +/- 0.7(stat) +/- 0.5(syst)) x 10(-4), B(B-0 -> D*(-/+)K(0)pi(+/-)) = (3.0 +/- 0.7(stat) +/- 0.3(syst)) x 10(-4), B(B-0 -> D-/+K*(+/-)) = (4.6 +/- 0.6(stat) +/- 0.5(syst)) x 10(-4), B(B-0 -> D*K-/+*(+/-) = (3.2 +/- 0.6(stat) +/- 0.3(syst)) x 10(-4). From these measurements we determine the fractions of resonant events to be f(B0 -> D+/-K*(-/+)) = 0.63 +/- 0.08(stat) +/- 0.04(syst) and f(B-0 -> D*K-/+*(+/-)) = 0.72 +/- 0.14(stat) +/- 0.05(syst)
    corecore