660 research outputs found

    Impact of War

    Get PDF
    Impact of War Podcasts: Impact of War Impact of War: The Cost of War Impact of War: Fina

    Rationalising sequence selection by ligand assemblies in the DNA minor groove : the case for thiazotropsin A

    Get PDF
    DNA-sequence and structure dependence on the formation of minor groove complexes at 5′-XCTAGY-3′ by the short lexitropsin thiazotropsin A are explored based on NMR spectroscopy, isothermal titration calorimetry (ITC), circular dichroism (CD) and qualitative molecular modeling. The structure and solution behaviour of the complexes are similar whether X = A, T, C or G and Z = T, A, I or C, CCTAGI being thermodynamically the most favoured (ΔG = -11.1 ± 0.1 kcal.mol-1). Binding site selectivity observed by NMR for ACTAGT in the presence of TCTAGA when both accessible sequences are concatenated in a 15-mer DNA duplex construct is consistent with thermodynamic parameters (ΙΔGΙACTAGT > ΙΔGΙTCTAGA) measured separately for the binding sites and with predictions from modeling studies. Steric bulk in the minor groove for Y = G causes unfavourable ligand-DNA interactions reflected in lower Gibbs free energy of binding (ΔG = -8.5 ± 0.01 kcal.mol-1). ITC and CD data establish that thiazotropsin A binds the ODNs with binding constants between 106 and 108 M-1 and reveal that binding is driven enthalpically through hydrogen bond formation and van der Waals interactions. The consequences of these findings are considered with respect to ligand self-association and the energetics responsible for driving DNA recognition by small molecule DNA minor groove binder

    Potential for modulation of the hydrophobic effect inside chaperonins

    Get PDF
    Despite the spontaneity of some in vitro protein folding reactions, native folding in vivo often requires the participation of barrel-shaped multimeric complexes known as chaperonins. Although it has long been known that chaperonin substrates fold upon sequestration inside the chaperonin barrel, the precise mechanism by which confinement within this space facilitates folding remains unknown. In this study, we examine the possibility that the chaperonin mediates a favorable reorganization of the solvent for the folding reaction. We begin by discussing the effect of electrostatic charge on solvent-mediated hydrophobic forces in an aqueous environment. Based on these initial physical arguments, we construct a simple, phenomenological theory for the thermodynamics of density and hydrogen bond order fluctuations in liquid water. Within the framework of this model, we investigate the effect of confinement within a chaperonin-like cavity on the configurational free energy of water by calculating solvent free energies for cavities corresponding to the different conformational states in the ATP- driven catalytic cycle of the prokaryotic chaperonin GroEL. Our findings suggest that one function of chaperonins may be to trap unfolded proteins and subsequently expose them to a micro-environment in which the hydrophobic effect, a crucial thermodynamic driving force for folding, is enhanced

    Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential

    Get PDF
    Recognition and binding of specific sites on DNA by proteins is central for many cellular functions such as transcription, replication, and recombination. In the process of recognition, a protein rapidly searches for its specific site on a long DNA molecule and then strongly binds this site. Here we aim to find a mechanism that can provide both a fast search (1-10 sec) and high stability of the specific protein-DNA complex (Kd=1015108K_d=10^{-15}-10^{-8} M). Earlier studies have suggested that rapid search involves the sliding of a protein along the DNA. Here we consider sliding as a one-dimensional (1D) diffusion in a sequence-dependent rough energy landscape. We demonstrate that, in spite of the landscape's roughness, rapid search can be achieved if 1D sliding is accompanied by 3D diffusion. We estimate the range of the specific and non-specific DNA-binding energy required for rapid search and suggest experiments that can test our mechanism. We show that optimal search requires a protein to spend half of time sliding along the DNA and half diffusing in 3D. We also establish that, paradoxically, realistic energy functions cannot provide both rapid search and strong binding of a rigid protein. To reconcile these two fundamental requirements we propose a search-and-fold mechanism that involves the coupling of protein binding and partial protein folding. Proposed mechanism has several important biological implications for search in the presence of other proteins and nucleosomes, simultaneous search by several proteins etc. Proposed mechanism also provides a new framework for interpretation of experimental and structural data on protein-DNA interactions

    Simulations of HIV capsid protein dimerization reveal the effect of chemistry and topography on the mechanism of hydrophobic protein association

    Get PDF
    Recent work has shown that the hydrophobic protein surfaces in aqueous solution sit near a drying transition. The tendency for these surfaces to expel water from their vicinity leads to self assembly of macromolecular complexes. In this article we show with a realistic model for a biologically pertinent system how this phenomenon appears at the molecular level. We focus on the association of the C-terminal domain (CA-C) of the human immunodeficiency virus (HIV) capsid protein. By combining all-atom simulations with specialized sampling techniques we measure the water density distribution during the approach of two CA-C proteins as a function of separation and amino acid sequence in the interfacial region. The simulations demonstrate that CA-C protein-protein interactions sit at the edge of a dewetting transition and that this mesoscopic manifestation of the underlying liquid-vapor phase transition can be readily manipulated by biology or protein engineering to significantly affect association behavior. While the wild type protein remains wet until contact, we identify a set of in silico mutations, in which three hydrophilic amino acids are replaced with nonpolar residues, that leads to dewetting prior to association. The existence of dewetting depends on the size and relative locations of substituted residues separated by nm length scales, indicating long range cooperativity and a sensitivity to surface topography. These observations identify important details which are missing from descriptions of protein association based on buried hydrophobic surface area

    A flexible integrative approach based on random forest improves prediction of transcription factor binding sites

    Get PDF
    Transcription factor binding sites (TFBSs) are DNA sequences of 6-15 base pairs. Interaction of these TFBSs with transcription factors (TFs) is largely responsible for most spatiotemporal gene expression patterns. Here, we evaluate to what extent sequence-based prediction of TFBSs can be improved by taking into account the positional dependencies of nucleotides (NPDs) and the nucleotide sequence-dependent structure of DNA. We make use of the random forest algorithm to flexibly exploit both types of information. Results in this study show that both the structural method and the NPD method can be valuable for the prediction of TFBSs. Moreover, their predictive values seem to be complementary, even to the widely used position weight matrix (PWM) method. This led us to combine all three methods. Results obtained for five eukaryotic TFs with different DNA-binding domains show that our method improves classification accuracy for all five eukaryotic TFs compared with other approaches. Additionally, we contrast the results of seven smaller prokaryotic sets with high-quality data and show that with the use of high-quality data we can significantly improve prediction performance. Models developed in this study can be of great use for gaining insight into the mechanisms of TF binding

    Specificity of Atonal and Scute bHLH factors: analysis of cognate E box binding sites and the influence of Senseless

    Get PDF
    The question of how proneural bHLH transcription factors recognise and regulate their target genes is still relatively poorly understood. We previously showed that Scute and Atonal target genes have different E box motifs, suggesting that specific DNA interactions contribute to differences in their target gene specificity. Here we show that Scute and Atonal proteins (in combination with Daughterless) can activate reporter gene expression via their cognate E boxes in a non-neuronal cell culture system, suggesting that the proteins have strong intrinsic abilities to recognise different E box motifs in the absence of specialised cofactors. Functional comparison of E boxes from several target genes and site-directed mutagenesis of E box motifs suggests that specificity and activity require further sequence elements flanking both sides of the previously identified E box motifs. Moreover, the proneural cofactor, Senseless, can augment the function of Scute and Atonal on their cognate E boxes and therefore may contribute to proneural specificity

    Predicting solvent accessibility: Higher accuracy using Bayesian statistics and optimized residue substitution classes

    Full text link
    We introduce a novel Bayesian probabilistic method for predicting the solvent accessibilities of amino acid residues in globular proteins. Using single sequence data, this method achieves prediction accuracies higher than previously published methods. Substantially improved predictions—comparable to the highest accuracies reported in the literature to date—are obtained by representing alignments of the example proteins and their homologs as strings of residue substitution classes, depending on the side chain types observed at each alignment position. These results demonstrate the applicability of this relatively simple Bayesian approach to structure prediction and illustrate the utility of the classification methodology previously developed to extract information from aligned sets of structurally related proteins. © 1996 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38524/1/4_ftp.pd

    Dissociation of minor groove binders from DNA: insights from metadynamics simulations

    Get PDF
    We have used metadynamics to investigate the mechanism of noncovalent dissociation from DNA by two representatives of alkylating and noncovalent minor groove (MG) binders. The compounds are anthramycin in its anhydrous form (IMI) and distamycin A (DST), which differ in mode of binding, size, flexibility and net charge. This choice enables to evaluate the influence of such factors on the mechanism of dissociation. Dissociation of IMI requires an activation free energy of ∼12 kcal/mol and occurs via local widening of the MG and loss of contacts between the drug and one DNA strand, along with the insertion of waters in between. The detachment of DST occurs at a larger free energy cost, ∼16.5 or ∼18 kcal/mol depending on the binding mode. These values compare well with that of 16.6 kcal/mol extracted from stopped-flow experiments. In contrast to IMI, an intermediate is found in which the ligand is anchored to the DNA through its amidinium tail. From this conformation, binding and unbinding occur almost at the same rate. Comparison between DST and with kinetic models for the dissociation of Hoechst 33258 from DNA uncovers common characteristics across different classes of noncovalent MG ligands

    Equivalent glycemic load (EGL): a method for quantifying the glycemic responses elicited by low carbohydrate foods

    Get PDF
    BACKGROUND: Glycemic load (GL) is used to quantify the glycemic impact of high-carbohydrate (CHO) foods, but cannot be used for low-CHO foods. Therefore, we evaluated the accuracy of equivalent-glycemic-load (EGL), a measure of the glycemic impact of low-CHO foods defined as the amount of CHO from white-bread (WB) with the same glycemic impact as one serving of food. METHODS: Several randomized, cross-over trials were performed by a contract research organization using overnight-fasted healthy subjects drawn from a pool of 63 recruited from the general population by newspaper advertisement. Incremental blood-glucose response area-under-the-curve (AUC) elicited by 0, 5, 10, 20, 35 and 50 g CHO portions of WB (WB-CHO) and 3, 5, 10 and 20 g glucose were measured. EGL values of the different doses of glucose and WB and 4 low-CHO foods were determined as: EGL = (F-B)/M, where F is AUC after food and B is y-intercept and M slope of the regression of AUC on grams WB-CHO. The dose-response curves of WB and glucose were used to derive an equation to estimate GL from EGL, and the resulting values compared to GL calculated from the glucose dose-response curve. The accuracy of EGL was assessed by comparing the GL (estimated from EGL) values of the 4 doses of oral-glucose with the amounts actually consumed. RESULTS: Over 0–50 g WB-CHO (n = 10), the dose-response curve was non-linear, but over the range 0–20 g the curve was indistinguishable from linear, with AUC after 0, 5, 10 and 20 g WB-CHO, 10 ± 1, 28 ± 2, 58 ± 5 and 100 ± 6 mmol × min/L, differing significantly from each other (n = 48). The difference between GL values estimated from EGL and those calculated from the dose-response curve was 0 g (95% confidence-interval, ± 0.5 g). The difference between the GL values of the 4 doses of glucose estimated from EGL, and the amounts of glucose actually consumed was 0.2 g (95% confidence-interval, ± 1 g). CONCLUSION: EGL, a measure of the glycemic impact of low-carbohydrate foods, is valid across the range of 0–20 g CHO, accurate to within 1 g, and at least sensitive enough to detect a glycemic response equivalent to that produced by 3 g oral-glucose in 10 subjects
    corecore