The Huayruro Project: mapping the Calicanto Inca area buried by the A.D. 1600 Huaynaputina eruption, with geophysical imaging and remote sensing

Raphael Antoine¹, Luisa Macedo², Anthony Finizola³, Eric Delcher³, Jean-Claude Thouret⁴, Cyrille Fauchard¹, Rachel Gusset³, Saida Japura⁵, Ivonne Lazarte⁵, Jersy Mariño⁵, Vincent Guilbert¹, Clémentine Bacri⁶, Adrien Normier⁶, Domingo Ramos⁵, Thibault Saintenoy⁷, Liliane Thouret⁸, José Del Carpio², Nino Puma², Orlando Macedo²

¹ENDSUM Team, Centre d'études et d'expertise sur les risques, l'environnement, la mobilité et l'aménagement (CEREMA), Rouen, France

²Observatorio Vulcanológico del Sur, Instituto Geofísico del Perú (OVS-IGP), Arequipa, Perù
³Laboratoire GéoSciences Réunion, Université de La Réunion, IPGP, Sorbonne Paris-Cité, La Réunion, France
⁴Laboratoire Magmas et Volcans, CNRS, Université Clermont Auvergne (UCA), OPGC, IRD, Aubière, France
⁵Observatorio Vulcanológico del INGEMMET (OVI-INGEMMET), Arequipa, Perù
⁶Wings for Science, Paris, France

⁷Laboratoire Archéologie des Amériques, Université Paris, France ⁸Collaborating with INGEMMET, Arequipa, Perù and UCA, Aubière, France

We present geophysical and remote sensing observations near the Quinistaquillas town (southern Peru), in the framework of the HUAYRURO Project. This Inca zone was buried during the A.D. 1600 Huaynaputina eruption, the most important volcanic phenomenon of the last 400 years. The eruption had a global impact, due to the volume of emitted ash (2-3 times the one emitted by Vesuvius in A.D. 79). This lead to a 1.13°C cooling of the planet and caused a worlwide agricultural crisis.

During the eruption, the Calicanto-Chimpapampa zone was covered by ashes and pyroclastic flows, with a thickness in the range [1 - 20] m. From 2015 to 2017, remote sensing and geophysical methods were deployed to map a ~ 1 km*2 km area, up to 3-m depth.

A multi-spectral drone was first used to acquire visible and thermal infrared data 1) to obtain a high resolution photogrammetric DEM (resolution: 1.23 cm) and 2) to detect the buried walls. Then, several 3D geophysical methods were performed to get a fast and precise location of the structures:

- An EM31 electomagnetic survey (Geonics instrument) and magnetic observations (GEM systems proton magnetometer) were tested for a fast mapping of the area;
- An IDS Ground Penetrating Radar (with antennas of 200 MHz) was used to obtain the precise location of the buried walls;
- All the methods were georeferenced using a Trimble R6 differential GPS.

In this work, several exemples of combination of these methods are presented. Finally, this methodology allowed us to propose a complete map of the structures at Calicanto, now used by the archeologists to excavate the town. This study shows the potentialities of the joint use of drone-based remote sensing and geophysical imaging for the promotion of archeological sites.

S01.30 Poster