91 research outputs found

    Regulation of alveolar macrophage p40phox: hierarchy of activating kinases and their inhibition by PGE2

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141717/1/jlb0219.pd

    Dimers and the Critical Ising Model on Lattices of genus>1

    Get PDF
    We study the partition function of both Close-Packed Dimers and the Critical Ising Model on a square lattice embedded on a genus two surface. Using numerical and analytical methods we show that the determinants of the Kasteleyn adjacency matrices have a dependence on the boundary conditions that, for large lattice size, can be expressed in terms of genus two theta functions. The period matrix characterizing the continuum limit of the lattice is computed using a discrete holomorphic structure. These results relate in a direct way the lattice combinatorics with conformal field theory, providing new insight to the lattice regularization of conformal field theories on higher genus Riemann Surfaces.Comment: 44 pages, eps figures included; typos corrected, figure and comments added to section

    A proximity-dependent biotinylation (BioID) approach flags the p62/sequestosome-1 protein as a caspase-1 substrate.

    Get PDF
    The inflammasome is a major component of the innate immune system, and its main function is to activate caspase-1, a cysteine protease that promotes inflammation by inducing interleukin-1β (IL-1β) maturation and release into the extracellular milieu. To prevent uncontrolled inflammation, this complex is highly regulated. When it is assembled, the inflammasome is insoluble, which has long precluded the analysis of its interactions with other proteins. Here we used the proximity-dependent biotinylation assay (BioID) to identify proteins associated with caspase-1 during inflammasome activation. Using the BioID in a cell-free system in which the inflammasome had been activated, we found that a caspase-1-biotin ligase fusion protein selectively labeled 111 candidates, including the p62/sequestosome-1 protein (p62). Using co-immunoprecipitation experiments, we demonstrated that p62 interacts with caspase-1. This interaction promoted caspase-1-mediated cleavage of p62 at Asp-329. Mechanistic and functional analyses revealed that caspase-1-mediated cleavage of p62 leads to loss of its interaction with the autophagosomal protein microtubule-associated protein 1 light chain 3 β (LC3B). Strikingly, overexpression of a p62 N-terminal fragment generated upon caspase-1 cleavage decreased IL-1β release, whereas overexpression of p62's C-terminal portion enhanced IL-1β release, by regulating pro-IL1β levels. Overall, the overexpression of both fragments together decreased IL-1β release. Taken together, our results indicate that caspase-1-mediated p62 cleavage plays a complex role in balancing caspase-1-induced inflammation

    Characteristics of meiofauna in extreme marine ecosystems: a review

    Get PDF
    Extreme marine environments cover more than 50% of the Earth’s surface and offer many opportunities for investigating the biological responses and adaptations of organisms to stressful life conditions. Extreme marine environments are sometimes associated with ephemeral and unstable ecosystems, but can host abundant, often endemic and well-adapted meiofaunal species. In this review, we present an integrated view of the biodiversity, ecology and physiological responses of marine meiofauna inhabiting several extreme marine environments (mangroves, submarine caves, Polar ecosystems, hypersaline areas, hypoxic/anoxic environments, hydrothermal vents, cold seeps, carcasses/sunken woods, deep-sea canyons, deep hypersaline anoxic basins [DHABs] and hadal zones). Foraminiferans, nematodes and copepods are abundant in almost all of these habitats and are dominant in deep-sea ecosystems. The presence and dominance of some other taxa that are normally less common may be typical of certain extreme conditions. Kinorhynchs are particularly well adapted to cold seeps and other environments that experience drastic changes in salinity, rotifers are well represented in polar ecosystems and loriciferans seem to be the only metazoan able to survive multiple stressors in DHABs. As well as natural processes, human activities may generate stressful conditions, including deoxygenation, acidification and rises in temperature. The behaviour and physiology of different meiofaunal taxa, such as some foraminiferans, nematode and copepod species, can provide vital information on how organisms may respond to these challenges and can provide a warning signal of anthropogenic impacts. From an evolutionary perspective, the discovery of new meiofauna taxa from extreme environments very often sheds light on phylogenetic relationships, while understanding how meiofaunal organisms are able to survive or even flourish in these conditions can explain evolutionary pathways. Finally, there are multiple potential economic benefits to be gained from ecological, biological, physiological and evolutionary studies of meiofauna in extreme environments. Despite all the advantages offered by meiofauna studies from extreme environments, there is still an urgent need to foster meiofauna research in terms of composition, ecology, biology and physiology focusing on extreme environments

    Eicosanoid control over antigen presenting cells in asthma

    Get PDF
    Asthma is a common lung disease affecting 300 million people worldwide. Allergic asthma is recognized as a prototypical Th2 disorder, orchestrated by an aberrant adaptive CD4+ T helper (Th2/Th17) cell immune response against airborne allergens, that leads to eosinophilic inflammation, reversible bronchoconstriction, and mucus overproduction. Other forms of asthma are controlled by an eosinophil-rich innate ILC2 response driven by epithelial damage, whereas in some patients with more neutrophilia, the disease is driven by Th17 cells. Dendritic cells (DCs) and macrophages are crucial regulators of type 2 immunity in asthma. Numerous lipid mediators including the eicosanoids prostaglandins and leukotrienes influence key functions of these cells, leading to either pro- or anti-inflammatory effects on disease outcome. In this review, we will discuss how eicosanoids affect the functions of DCs and macrophages in the asthmatic lung and how this leads to aberrant T cell differentiation that causes disease

    Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach

    Get PDF
    Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This network joins apparently heterogeneous phenotypes such as autoimmune, respiratory, digestive, cardiovascular, metabolic, and neurodegenerative diseases, along with cancer. Importantly, this approach matches and confirms in silico several applications for NRF2-modulating drugs validated in vivo at different phases of clinical development. Pharmacologically, their profile is as diverse as electrophilic dimethyl fumarate, synthetic triterpenoids like bardoxolone methyl and sulforaphane, protein-protein or DNA-protein interaction inhibitors, and even registered drugs such as metformin and statins, which activate NRF2 and may be repurposed for indications within the NRF2 cluster of disease phenotypes. Thus, NRF2 represents one of the first targets fully embraced by classic and systems medicine approaches to facilitate both drug development and drug repurposing by focusing on a set of disease phenotypes that appear to be mechanistically linked. The resulting NRF2 drugome may therefore rapidly advance several surprising clinical options for this subset of chronic diseases

    Barrier Tissue Macrophages: Functional Adaptation to Environmental Challenges

    Get PDF
    Macrophages are found throughout the body, where they have crucial roles in tissue development, homeostasis and remodeling, as well as being sentinels of the innate immune system that can contribute to protective immunity and inflammation. Barrier tissues, such as the intestine, lung, skin and liver, are exposed constantly to the outside world, which places special demands on resident cell populations such as macrophages. Here we review the mounting evidence that although macrophages in different barrier tissues may be derived from distinct progenitors, their highly specific properties are shaped by the local environment, which allows them to adapt precisely to the needs of their anatomical niche. We discuss the properties of macrophages in steady-state barrier tissues, outline the factors that shape their differentiation and behavior and describe how macrophages change during protective immunity and inflammation
    corecore