84 research outputs found

    The Cockayne syndrome B protein: involvement in transcription-coupled DNA repair

    Get PDF
    Each organism stores its genetic information in large DNA molecules, present in most cells. DNA is composed of four different nucleotides, abbreviated as G,A,T,and C, which make up the genetic code that is translated into proteins. An intermediate between DNA and protein is the RNA, that is generated by a process called transcription, during which one strand of the double DNA helix serves as a template and is read by a scanning RNA polymerase complex. As a result, a messenger RNA molecule is produced, that in turn forms a template for protein synthesis. It is of major importance that changes (mutations) in the genetic code of the DNA are limited to a minimum. Although mutations form the basis of biological diversity, they can also be the starting point of carcinogenesis in multicellular species. The genomic DNA is continuously challenged

    Clinical biomarker innovation: when is it worthwhile?

    Get PDF
    Contains fulltext : 208980.pdf (publisher's version ) (Open Access

    Biochemical and biological characterization of wild-type and ATPase-deficient Cockayne syndrome B repair protein

    Get PDF
    Cockayne syndrome (CS) is a nucleotide excision repair disorder characterized by sun (UV) sensitivity and severe developmental problems. Two genes have been shown to be involved: CSA and CSB. Both proteins play an essential role in preferential repair of transcription-blocking lesions from active genes. In this study we report the purification and characterization of baculovirus-produced HA-His6-tagged CSB protein (dtCSB), using a highly efficient three-step purification protocol. Microinjection of dtCSB protein in CS-B fibroblasts shows that it is biologically functional in vivo. dtCSB exhibits DNA-dependent ATPase activity, stimulated by naked as well as nucleosomal DNA. Using structurally defined DNA oligonucleotides, we show that double-stranded DNA and double-stranded DNA with partial single-stranded character but not true single-stranded DNA act as efficient cofactors for CSB ATPase activity. Using a variety of substrates, no overt DNA unwinding by dtCSB could be detected, as found with other SNF2/SWI2 family proteins. By site-directed mutagenesis the invariant lysine residue in the NTP-binding motif of CSB was substituted with a physicochemically related arginine. As expected, this mutation abolished ATPase activity. Surprisingly, the mutant protein was nevertheless able to partially rescue the defect in recovery of RNA synthesis after UV upon microinjection in CS-B fibroblasts. These results indicate that integrity of the conserved nucleotide-binding domain is important for the in vivo function of CSB but that also other properties independent from ATP hydrolysis may contribute to CSB biological functions

    The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex

    Get PDF
    Transcription-coupled repair (TCR), a subpathway of nucleotide excision repair (NER) defective in Cockayne syndrome A and B (CSA and CSB), is responsible for the preferential removal of DNA lesions from the transcribed strand of active genes, permitting rapid resumption of blocked transcription. Here we demonstrate by microinjection of antibodies against CSB and CSA gene products into living primary fibroblasts, that both proteins are required for TCR and for recovery of RNA synthesis after UV damage in vivo but not for basal transcription itself. Furthermore, immunodepletion showed that CSB is not required for in vitro NER or transcription. Its central role in TCR suggests that CSB interacts with other repair and transcription proteins. Gel filtration of repair- and transcription-competent whole cell extracts provided evidence that CSB and CSA are part of large complexes of different sizes. Unexpectedly, there was no detectable association of CSB with several candidate NER and transcription proteins. However, a minor but significant portion (10-15%) of RNA polymerase II was found to be tightly associated with CSB. We conclude that within cell-free extracts, CSB is not stably associated with the majority of core NER or transcription components, but is part of a distinct complex involving RNA polymerase II. These findings suggest that CSB is implicated in, but not essential for, transcription, and support the idea that Cockayne syndrome is due to a combined repair and transcription deficiency

    Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition.

    Get PDF
    A mouse model for the nucleotide excision repair disorder Cockayne syndrome (CS) was generated by mimicking a truncation in the CSB(ERCC6) gene of a CS-B patient. CSB-deficient mice exhibit all of the CS repair characteristics: ultraviolet (UV) sensitivity, inactivation of transcription-coupled repair, unaffected global genome repair, and inability to resume RNA synthesis after UV exposure. Other CS features thought to involve the functioning of basal transcription/repair factor TFIIH, such as growth failure and neurologic dysfunction, are present in mild form. In contrast to the human syndrome, CSB-deficient mice show increased susceptibility to skin cancer. Our results demonstrate that transcription-coupled repair of UV-induced cyclobutane pyrimidine dimers contributes to the prevention of carcinogenesis in mice. Further, they suggest that the lack of cancer predisposition in CS patients is attributable to a global genome repair process that in humans is more effective than in rodents

    Mass Spectrometry for Identification, Monitoring, and Minimal Residual Disease Detection of M-Proteins

    Get PDF
    BACKGROUND: Monoclonal gammopathies (MGs) are plasma cell disorders defined by the clonal expansion of plasma cells, resulting in the characteristic excretion of a monoclonal immunoglobulin (M-protein). M-protein detection and quantification are integral parts of the diagnosi

    Biosynthetic homeostasis and resilience of the complement system in health and infectious disease

    Get PDF
    Background: The complement system is a central component of the innate immune system. Constitutive biosynthesis of complement proteins is essential for homeostasis. Dysregulation as a consequence of genetic or environmental cues can lead to inflammatory syndromes or increased susceptibility to infection. However, very little is known about steady state levels in children or its kinetics during infection. Methods: With a newly developed multiplex mass spectrometry-based method we analyzed the levels of 32 complement proteins in healthy individuals and in a group of pediatric patients infected with bacterial or viral pathogens. Findings: In plasma from young infants we found reduced levels of C4BP, ficolin-3, factor B, classical pathway components C1QA, C1QB, C1QC, C1R, and terminal pathway components C5, C8, C9, as compared to healthy adults; whereas the majority of complement regulating (inhibito

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding: Bill & Melinda Gates Foundation
    corecore