10 research outputs found

    Festschrift 25 Jahre Fachgebiet Maschinenelemente und Mechanik, Technische Hochschule Darmstadt

    Get PDF
    Festschrift 25 Jahre Fachgebiet Maschinenelemente und Mechanik, Technische Hochschule Darmstadt Leiter Prof. Dr.-Ing. Walter Raab. Kolloquium am 13. September 1991, Darmstad

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Colorectal Cancer

    No full text

    Multiple loci on 8q24 associated with prostate cancer susceptibility

    No full text
    Previous studies have identified multiple loci on 8q24 associated with prostate cancer risk. We performed a comprehensive analysis of SNP associations across 8q24 by genotyping tag SNPs in 5,504 prostate cancer cases and 5,834 controls. We confirmed associations at three previously reported loci and identified additional loci in two other linkage disequilibrium blocks (rs1006908: per-allele OR = 0.87, P = 7.9 x 10(-8); rs620861: OR = 0.90, P = 4.8 x 10(-8)). Eight SNPs in five linkage disequilibrium blocks were independently associated with prostate cancer susceptibility

    Identification of seven new prostate cancer susceptibility loci through a genome-wide association study

    Get PDF
    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. To identify common PrCa susceptibility alleles, we have previously conducted a genome-wide association study in which 541, 129 SNPs were genotyped in 1,854 PrCa cases with clinically detected disease and 1,894 controls. We have now evaluated promising associations in a second stage, in which we genotyped 43,671 SNPs in 3,650 PrCa cases and 3,940 controls, and a third stage, involving an additional 16,229 cases and 14,821 controls from 21 studies. In addition to previously identified loci, we identified a further seven new prostate cancer susceptibility loci on chromosomes 2, 4, 8, 11, and 22 (P=1.6×10−8 to P=2.7×10−33)

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore