Technical University of Darmstadt

tuprints
Not a member yet
    10440 research outputs found

    Influence of Friction Stir Weld Parameters on the Corrosion Susceptibility of EN AW‐7075 Weld Seam and Heat‐Affected Zone

    Get PDF
    Friction stir welding enables joining of high‐strength, lightweight aluminum alloys, e.g., EN‐AW‐7075, below the melting point by induced plastic deformation. Therefore, heat transfer into the adjacent regions beneath the weld seam is significantly reduced as compared to fusion welding processes such as laser beam welding. However, specific zones along the weld seam area are susceptible to localized corrosion due to grain growth and the precipitation of intermetallic phases. Thus, several approaches toward lowering the corrosion susceptibility of the heat‐affected zone are presented. Special interest is given to increasing the plastic deformation by the use of novel multipin welding tools that eventually facilitate reduced heat input during welding as a result of substantially lower tool revolutions. The corrosion behavior is tested by means of full material immersion tests and electrochemical measurements which provide insight into the corrosion kinetics. Using pre‐ and postmortem microstructural analysis, the mechanisms influencing the initiation of corrosion can be identified. Supported by in‐operando temperature measurements, the varied welding parameters and their interrelationships to corrosion resistance can be derived. Furthermore, recommendations on optimal welding parameters to obtain enhanced corrosion resistance can be deduced

    The N‐terminal peptide of the transglutaminase‐activating metalloprotease inhibitor from Streptomyces mobaraensis accommodates both inhibition and glutamine cross‐linking sites

    Get PDF
    Streptomyces mobaraensis is a key player for the industrial production of the protein cross‐linking enzyme microbial transglutaminase (MTG). Extra‐cellular activation of MTG by the transglutaminase‐activating metalloprotease (TAMP) is regulated by the TAMP inhibitory protein SSTI that belongs to the large Streptomyces subtilisin inhibitor (SSI) family. Despite decades of SSI research, the binding site for metalloproteases such as TAMP remained elusive in most of the SSI proteins. Moreover, SSTI is a MTG substrate, and the preferred glutamine residues for SSTI cross‐linking are not determined. To address both issues, that is, determination of the TAMP and the MTG glutamine binding sites, SSTI was modified by distinct point mutations as well as elongation or truncation of the N‐terminal peptide by six and three residues respectively. Structural integrity of the mutants was verified by the determination of protein melting points and supported by unimpaired subtilisin inhibitory activity. While exchange of single amino acids could not disrupt decisively the SSTI TAMP interaction, the N‐terminally shortened variants clearly indicated the highly conserved Leu40‐Tyr41 as binding motif for TAMP. Moreover, enzymatic biotinylation revealed that an adjacent glutamine pair, upstream from Leu40‐Tyr41 in the SSTI precursor protein, is the preferred binding site of MTG. This extension peptide disturbs the interaction with TAMP. The structure of SSTI was furthermore determined by X‐ray crystallography. While no structural data could be obtained for the N‐terminal peptide due to flexibility, the core structure starting from Tyr41 could be determined and analysed, which superposes well with SSI‐family proteins

    Image‐based isogeometric twins of lattices with virtual image correlation for varying cross‐section beams

    No full text
    Cellular materials, in particular metal or polymer foams and beam lattices, are characterized by a complex architecture where the material is concentrated in slender struts. This study is concerned with the construction of numerically efficient sample-specific digital twin for the analysis and characterization of the mechanical behavior of such meta-materials. A method to build an explicit, light, and analysis-suitable isogeometric beam model directly from digital images is proposed. More precisely, as a main contribution, the virtual image correlation method is extended to the case of multiple interconnected beams with varying cross-sections. Special care is also given to the initialization for better efficiency and robustness. Synthetic and real examples of increasing complexity, that is, curved beams, lattices, and foams, are presented to account for the performance of the developed workflow from digital images to an isogeometric twin for mechanical modeling and simulation

    Seeing through the static: the temporal dimension of plant-animal mutualistic interactions

    Get PDF
    Most studies of plant–animal mutualistic networks have come from a temporally static perspective. This approach has revealed general patterns in network structure, but limits our ability to understand the ecological and evolutionary processes that shape these networks and to predict the consequences of natural and human‐driven disturbance on species interactions. We review the growing literature on temporal dynamics of plant–animal mutualistic networks including pollination, seed dispersal and ant defence mutualisms. We then discuss potential mechanisms underlying such variation in interactions, ranging from behavioural and physiological processes at the finest temporal scales to ecological and evolutionary processes at the broadest. We find that at the finest temporal scales (days, weeks, months) mutualistic interactions are highly dynamic, with considerable variation in network structure. At intermediate scales (years, decades), networks still exhibit high levels of temporal variation, but such variation appears to influence network properties only weakly. At the broadest temporal scales (many decades, centuries and beyond), continued shifts in interactions appear to reshape network structure, leading to dramatic community changes, including loss of species and function. Our review highlights the importance of considering the temporal dimension for understanding the ecology and evolution of complex webs of mutualistic interactions

    Porosity and Structure of Hierarchically Porous Ni/Al₂O₃ Catalysts for CO₂ Methanation

    Get PDF
    CO₂ methanation is often performed on Ni/Al₂O₃ catalysts, which can suffer from mass transport limitations and, therefore, decreased efficiency. Here we show the application of a hierarchically porous Ni/Al₂O₃ catalyst for methanation of CO₂. The material has a well-defined and connected meso- and macropore structure with a total porosity of 78%. The pore structure was thoroughly studied with conventional methods, i.e., N₂ sorption, Hg porosimetry, and He pycnometry, and advanced imaging techniques, i.e., electron tomography and ptychographic X-ray computed tomography. Tomography can quantify the pore system in a manner that is not possible using conventional porosimetry. Macrokinetic simulations were performed based on the measures obtained by porosity analysis. These show the potential benefit of enhanced mass-transfer properties of the hierarchical pore system compared to a pure mesoporous catalyst at industrially relevant conditions. Besides the investigation of the pore system, the catalyst was studied by Rietveld refinement, diffuse reflectance ultraviolet-visible (DRUV/vis) spectroscopy, and H₂-temperature programmed reduction (TPR), showing a high reduction temperature required for activation due to structural incorporation of Ni into the transition alumina. The reduced hierarchically porous Ni/Al₂O₃ catalyst is highly active in CO₂ methanation, showing comparable conversion and selectivity for CH₄ to an industrial reference catalyst

    On the Impact of the Degree of Fluorination on the ORR Limiting Processes within Iron Based Catalysts: A Model Study on Symmetrical Films of Barium Ferrate

    Get PDF
    In this study, symmetrical films of BaFeO₂.₆₇, BaFeO₂.₃₃F₀.₃₃ and BaFeO₂F were synthesized and the oxygen uptake and conduction was investigated by high temperature impedance spectroscopy under an oxygen atmosphere. The data were analyzed on the basis of an impedance model designed for highly porous mixed ionic electronic conducting (MIEC) electrodes. Variable temperature X-ray diffraction experiments were utilized to estimate the stability window of the oxyfluoride compounds, which yielded a degradation temperature for BaFeO₂.₃₃F₀.₃₃ of 590 °C and a decomposition temperature for BaFeO₂F of 710 °C. The impedance study revealed a significant change of the catalytic behavior in dependency of the fluorine content. BaFeO₂.₆₇ revealed a bulk-diffusion limited process, while BaFeO₂.₃₃F₀.₃₃ appeared to exhibit a fast bulk diffusion and a utilization region δ larger than the electrode thickness L (8 μm). In contrast, BaFeO₂F showed very area specific resistances due to the lack of oxygen vacancies. The activation energy for the uptake and conduction process of oxygen was found to be 0.07/0.29 eV (temperature range-dependent), 0.33 eV and 0.67 eV for BaFeO₂.₆₇, BaFeO₂.₃₃F₀.₃₃ and BaFeO₂F, respectively

    Continuous Magnitude Production of Loudness

    Get PDF
    Continuous magnitude estimation and continuous cross-modality matching with line length can efficiently track the momentary loudness of time-varying sounds in behavioural experiments. These methods are known to be prone to systematic biases but may be checked for consistency using their counterpart, magnitude production. Thus, in Experiment 1, we performed such an evaluation for time-varying sounds. Twenty participants produced continuous cross-modality matches to assess the momentary loudness of fourteen songs by continuously adjusting the length of a line. In Experiment 2, the resulting temporal line length profile for each excerpt was played back like a video together with the given song and participants were asked to continuously adjust the volume to match the momentary line length. The recorded temporal line length profile, however, was manipulated for segments with durations between 7 to 12 s by eight factors between 0.5 and 2, corresponding to expected differences in adjusted level of −10, −6, −3, −1, 1, 3, 6, and 10 dB according to Stevens’s power law for loudness. The average adjustments 5 s after the onset of the change were −3.3, −2.4, −1.0, −0.2, 0.2, 1.4, 2.4, and 4.4 dB. Smaller adjustments than predicted by the power law are in line with magnitude-production results by Stevens and co-workers due to “regression effects.” Continuous cross-modality matches of line length turned out to be consistent with current loudness models, and by passing the consistency check with cross-modal productions, demonstrate that the method is suited to track the momentary loudness of time-varying sounds

    Validation of extracellular miRNA quantification in blood samples using RT‐qPCR

    Get PDF
    Extracellular microRNAs (miRs) have been proposed as important blood‐based biomarkers for several diseases. Contrary to proteins and other RNA classes, miRs are stable and easily detectable in body fluids. In this respect, miRs represent a perfect candidate for minimal invasive biomarkers which can hopefully become a complement for invasive histological examinations of tumor tissue. Despite the high number of miR biomarker studies, the specificity and reproducibility of these studies is missing. Therefore, the standardization of pre‐analytical and analytical methods is urgently needed. Here, we validated miR analysis for RNA isolation and miR quantification by quantitative polymerase chain reaction (RT‐qPCR) based on good laboratory practice (GLP). Validation was carried out exemplarily on four miRs, which had already been described as potential biomarkers in previous studies. As basis for RNA analysis using RT‐qPCR, the Minimum Information for Publication of Quantitative Real‐Time PCR Experiments were applied and adapted on the analysis of circulating miRs from human plasma. In our study, we identified and solved several pitfalls from handling to normalization strategy in the analysis of extracellular miRs that lead to inconsistent and non‐repeatable data. Principles of GLP set a framework of experimental design, performance and monitoring to ensure high quality and reliable data. Within this study, we appointed first acceptance criteria for circulating miR quantification during validation which set standards for future miR quantification in blood samples

    H₂O Collisional Broadening Coefficients at 1.37 µm and Their Temperature Dependence: A Metrology Approach

    Get PDF
    We report self- and air collisional broadening coefficients for the H₂O line at 7299.43 cm⁻¹ and corresponding temperature coefficients for a temperature range spanning 293–573 K. New laser spectroscopic setups specifically designed for this purpose have been developed and are described. The line parameters reported here are in good agreement with those values reported in the HITRAN 2020 database, but the uncertainties have been reduced by factors of about 4, 1.3 and 4.4 for the self-broadening coefficient, air broadening coefficient and the temperature exponent of air broadening, respectively. Further, we combined our measurement approach with metrological data quality objectives, addressing the traceability of the results to the international system of units (SI) and evaluated the uncertainties following the guide to the expression of uncertainty in measurement (GUM)

    Optimization of Multilayered Walls for Building Envelopes Including PCM-Based Composites

    Get PDF
    This work proposes a numerical procedure to simulate and optimize the thermal response of a multilayered wallboard system for building envelopes, where each layer can be possibly made of Phase Change Materials (PCM)-based composites to take advantage of their Thermal-Energy Storage (TES) capacity. The simulation step consists in solving the transient heat conduction equation across the whole wallboard using the enthalpy-based finite element method. The weather is described in detail by the Typical Meteorological Year (TMY) of the building location. Taking the TMY as well as the wall azimuth as inputs, EnergyPlusTM is used to define the convective boundary conditions at the external surface of the wall. For each layer, the material is chosen from a predefined vade mecum, including several PCM-based composites developed at the Institut für Werkstoffe im Bauwesen of TU Darmstadt together with standard insulating materials (i.e., EPS or Rockwool). Finally, the optimization step consists in using genetic algorithms to determine the stacking sequence of materials across the wallboard to minimize the undesired heat loads. The current simulation-based optimization procedure is applied to the design of envelopes for minimal undesired heat losses and gains in two locations with considerably different weather conditions, viz. Sauce Viejo in Argentina and Frankfurt in Germany. In general, for each location and all the considered orientations (north, east, south and west), optimal results consist of EPS walls containing a thin layer made of the PCM-based composite with highest TES capacity, placed near the middle of the wall and closer to the internal surface

    10,368

    full texts

    10,441

    metadata records
    Updated in last 30 days.
    tuprints is based in Germany
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇