1,245 research outputs found

    Field investigation of deformation characteristics and stress mobilisation of a soil slope

    Get PDF
    Stress mobilisation and deformation of a slope are important for engineers to carry out reliable design of retaining systems. However, most case histories reported mainly on the response of pore-water pressure (PWP), whereas knowledge about the stress-deformation characteristics of slope is limited. In this study, a saprolitic soil slope was instrumented to monitor not only the responses of PWP but also horizontal stress and horizontal displacement. To assist in the interpretation of field data, a series of laboratory tests was conducted to characterise the volume change behaviour of soil taken from the site, under the effects of both net stress and suction. During a rainstorm event when positive PWP built up, a remarkably large displacement of 20 mm was recorded between 5.5 and 6 m depths, and the top 5 m of the slope exhibited translational down-slope movement. This caused an increase in effective horizontal stress by 350%, which reached a peak value close to 40% of an effective passive stress. During the subsequent dry season when suction was recovered, an up-slope rebound of 10 mm was recorded. Comparison of field and laboratory data reveals that the rebound was attributed to suction-induced soil shrinkage. This rebound led to a decrease in the effective horizontal stress previously built up during the storm event

    Jet production in charged current deep inelastic e⁺p scatteringat HERA

    Get PDF
    The production rates and substructure of jets have been studied in charged current deep inelastic e⁺p scattering for Q² > 200 GeV² with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb⁻¹. Inclusive jet cross sections are presented for jets with transverse energies E_{T}^{jet} > 5 GeV. Measurements of the mean subjet multiplicity, 〈n_{sbj}〉, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations are compared to the measurements. The value of α_{s} (M_{z}), determined from 〈n_{sbj}〉 at y_{cut} = 10⁻² for jets with 25 < E_{T}^{jet} < 119 GeV, is α_{s} (M_{z}) = 0.1202 ± 0.0052 (stat.)_{-0.0019}^{+0.0060} (syst.)_{-0.0053}^{+0.0065} (th.). The mean subjet multiplicity as a function of Q² is found to be consistent with that measured in NC DIS

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    Difference in the color stability of direct and indirect resin composites

    Get PDF
    Indirect resin composites are generally regarded to have better color stability than direct resin composites since they possess higher conversion degree. OBJECTIVE: The present study aimed at comparing the changes in color (&#916;E) and color coordinates (&#916;L, &#916;a and &#916;b) of one direct (Estelite Sigma: 16 shades) and 2 indirect resin composites (BelleGlass NG: 16 shades; Sinfony: 26 shades) after thermocycling. MATERIAL AND METHODS: Resins were packed into a mold and light cured; post-curing was performed on indirect resins. Changes in color and color coordinates of 1-mm-thick specimens were determined after 5,000 cycles of thermocycling on a spectrophotometer. RESULTS: &#916;E values were in the range of 0.3 to 1.2 units for direct resins, and 0.3 to 1.5 units for indirect resins, which were clinically acceptable (&#916;

    Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-

    Get PDF
    We report the first observation of the baryonic flavor-changing neutral current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a statistical significance of 5.8 Gaussian standard deviations. This measurement uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV collected by the CDF II detector at the Tevatron collider. The total and differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}. We also report the first measurement of the differential branching ratio of B_s -> phi mu+ mu- using 49 signal events. In addition, we report branching ratios for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let

    Thienoisoindigo-Based Semiconductor Nanowires Assembled with 2-Bromobenzaldehyde via Both Halogen and Chalcogen Bonding

    Get PDF
    We fabricated nanowires of a conjugated oligomer and applied them to organic field-effect transistors (OFETs). The supramolecular assemblies of a thienoisoindigo-based small molecular organic semiconductor (TIIG-Bz) were prepared by co-precipitation with 2-bromobenzaldehyde (2-BBA) via a combination of halogen bonding (XB) between the bromide in 2-BBA and electron-donor groups in TIIG-Bz, and chalcogen bonding (CB) between the aldehyde in 2-BBA and sulfur in TIIG-Bz. It was found that 2-BBA could be incorporated into the conjugated planes of TIIG-Bz via XB and CB pairs, thereby increasing the pi - pi stacking area between the conjugated planes. As a result, the driving force for one-dimensional growth of the supramolecular assemblies via pi - pi stacking was significantly enhanced. TIIG-Bz/2-BBA nanowires were used to fabricate OFETs, showing significantly enhanced charge transfer mobility compared to OFETs based on pure TIIG-Bz thin films and nanowires, which demonstrates the benefit of nanowire fabrication using 2-BB

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Perceptions, Attitude, Responses, Knowledge and Emotional Well-being (PARKE) of COVID-19 among students at Newcastle University Medicine Malaysia (NUMed)

    Get PDF
    \ua9 2021, International Society of Global Health. All rights reserved. Background: Adherence to preventative measures designed to mitigate transmission of COVID-19 depends on individual’s understanding and perception of COVID-19. The objective of this study was to assess the knowledge, perceptions, behavioural adaptation and psychological well-being related to COVID-19 among students attending Newcastle University Medicine Malaysia. Methods: A cross-sectional study was conducted using convenience sampling of students. The self-administered online questionnaire was sent via email in Google forms format between 18 April and 30 April 2020. The questionnaire focused on sociodemographic, perception, attitude and behavioural responses, knowledge and sources of information and anxiety level. Results 326 university students with mean age of 21.8 (S.D 2.3) participated in this study. More females (n =236) took part in the study than males (n= 90). Most students (80%) believed that they knew how to protect themselves. More than two-thirds (68%) of students strongly agreed that COVID-19 was a serious public health issue. Most students (&gt;90%) practised the recommended measures, except for avoid touching of eyes, nose and mouth with unwashed hands (82%). Wearing a facemask was positively associated with behavioural uptake in university students. Conclusions: This study showed a good attitude, behavioural responses, knowledge level and emotional responses among NUMed students towards COVID-19

    Improved representation of the diurnal variation of warm season precipitation by an atmospheric general circulation model at a 10 km horizontal resolution

    Get PDF
    This study investigates the diurnal variation of the warm season precipitation simulated by the Goddard Earth Observing System version 5 atmospheric general circulation model for 2??years (2005???2006) at a horizontal resolution of 10??km. The simulation was validated with the satellite-derived Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation data and the Modern-Era Retrospective analysis for Research and Applications atmospheric reanalysis for atmospheric winds and moisture. The simulation is compared with the coarse-resolution run in 50??km to examine the impacts driven by resolution change. Overall, the 10??km model tends to reproduce the important features of the observed diurnal variation, such as the amplitude and phase at which precipitation peaks in the evening on land and in the morning over the ocean, despite an excessive amplitude bias over land. The model also reproduces the realistic propagation patterns of precipitation in the vicinity of ocean coasts and major mountains. The regional characteristics of the diurnal precipitation over two regions, the Bay of Bengal and the Great Plains in North America, are examined in detail, where the observed diurnal cycle exhibits a systematic transition in the peak phase due to the development and propagation of regional-scale convective systems. The model is able to reproduce this pattern as well as the diurnal variation of low-level wind and moisture convergence; however, it is less effective at representing the nocturnal peak of precipitation over the Great Plains. The model results suggest that increasing the horizontal resolution of the model to 10??km substantially improves the representation of the diurnal precipitation cycle. However, intrinsic model deficiencies in topographical precipitation and the accurate representation of mesoscale convective systems remain a challenge
    corecore