479 research outputs found

    Spring-Charged Particles Model to Improved Shape Recovery:An Application for X-Ray Spinal Segmentation

    Get PDF
    Deformable models are widely used in medical image segmentation methods, to find not only single but also multiple objects within an image. They have the ability to follow the contours of an object of interest, define the boundary of ROI (Region Of Interest) and improve shape recovery. However, these methods still have limitations in cases of low image quality or clutter. This paper presents a new deformable model, the Spring-Charged Particles Model (SCPM). It simulates the movement of positively charged particles connected by springs, attracted towards the contour of objects of interest which is charged negatively, according to the gradient-magnitude image. Springs prevent the particles from moving away and keep the particles at appropriate distances without reducing their flexibility. SCPM was tested on simple shape images and on frontal X-ray images of scoliosis patients. Artificial noise was added to the simple images to examine the robustness of the method. Several configurations of springs and positively charged-particles were evaluated by determining the best spinal segmentation result. The performance of SCPM was compared to the Charged Fluid Model (CFM), Active Contours, and a convolutional neural network (CNN) with U-Net architecture to measure its ability for determining the curvature of the spinal column from frontal X-Ray images. The results show that SCPM is better at segmenting the spine and determining its curvature, as indicated by the highest Area Score value of 0.837, and the lowest standard deviation value of 0.028

    Attachment Styles Within the Coach-Athlete Dyad: Preliminary Investigation and Assessment Development

    Get PDF
    The present preliminary study aimed to develop and examine the psychometric properties of a new sport-specific self-report instrument designed to assess athletes’ and coaches’ attachment styles. The development and initial validation comprised three main phases. In Phase 1, a pool of items was generated based on pre-existing self-report attachment instruments, modified to reflect a coach and an athlete’s style of attachment. In Phase 2, the content validity of the items was assessed by a panel of experts. A final scale was developed and administered to 405 coaches and 298 athletes (N = 703 participants). In Phase 3, confirmatory factor analysis of the obtained data was conducted to determine the final items of the Coach-Athlete Attachment Scale (CAAS). Confirmatory factor analysis revealed acceptable goodness of fit indexes for a 3-first order factor model as well as a 2-first order factor model for both the athlete and the coach data, respectively. A secure attachment style positively predicted relationship satisfaction, while an insecure attachment style was a negative predictor of relationship satisfaction. The CAAS revealed initial psychometric properties of content, factorial, and predictive validity, as well as reliability

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters

    Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

    Get PDF
    Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.Comment: Submitted to Physics Letters

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO

    Measurement of CP observables in B± → D(⁎)K± and B± → D(⁎)π± decays

    Get PDF
    Measurements of CP observables in B ± →D (⁎) K ± and B ± →D (⁎) π ± decays are presented, where D (⁎) indicates a neutral D or D ⁎ meson that is an admixture of D (⁎)0 and DÂŻ (⁎)0 states. Decays of the D ⁎ meson to the Dπ 0 and DÎł final states are partially reconstructed without inclusion of the neutral pion or photon, resulting in distinctive shapes in the B candidate invariant mass distribution. Decays of the D meson are fully reconstructed in the K ± π ∓ , K + K − and π + π − final states. The analysis uses a sample of charged B mesons produced in pp collisions collected by the LHCb experiment, corresponding to an integrated luminosity of 2.0, 1.0 and 2.0 fb −1 taken at centre-of-mass energies of s=7, 8 and 13 TeV, respectively. The study of B ± →D ⁎ K ± and B ± →D ⁎ π ± decays using a partial reconstruction method is the first of its kind, while the measurement of B ± →DK ± and B ± →Dπ ± decays is an update of previous LHCb measurements. The B ± →DK ± results are the most precise to date
    • 

    corecore