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ABSTRACT Deformable models are widely used in medical image segmentation methods, to find not
only single but also multiple objects within an image. They have the ability to follow the contours of an
object of interest, define the boundary of ROI (Region Of Interest) and improve shape recovery. However,
these methods still have limitations in cases of low image quality or clutter. This paper presents a new
deformable model, the Spring-Charged Particles Model (SCPM). It simulates the movement of positively
charged particles connected by springs, attracted towards the contour of objects of interest which is charged
negatively, according to the gradient-magnitude image. Springs prevent the particles from moving away
and keep the particles at appropriate distances without reducing their flexibility. SCPM was tested on
simple shape images and on frontal X-ray images of scoliosis patients. Artificial noise was added to the
simple images to examine the robustness of the method. Several configurations of springs and positively
charged-particles were evaluated by determining the best spinal segmentation result. The performance of
SCPM was compared to the Charged Fluid Model (CFM), Active Contours, and a convolutional neural
network (CNN) with U-Net architecture to measure its ability for determining the curvature of the spinal
column from frontal X-Ray images. The results show that SCPM is better at segmenting the spine and
determining its curvature, as indicated by the highest Area Score value of 0.837, and the lowest standard
deviation value of 0.028.

INDEX TERMS Deformable models, spinal segmentation, medical image analysis, spring-charged particle
model.

I. INTRODUCTION
Image analysis and computer vision are interconnected fields,
and provide a range of important tools in the field of biomed-
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ical engineering. Support of diagnosis carried out by doc-
tors is very dependent on the results of the analysis and
interpretation of the images represented both 2D and 3D
computer vision systems. Many new image analysis and
computer vision algorithms are required for computer-aided
diagnosis, including image segmentation, modeling, object
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recognition and tracking, shape analysis, and shape recovery.
However, there are still challenges especially for automatic
detection of regions or objects of interest, and determining
their properties for diagnostic purposes. Shape recovery is
an important step to refine object boundaries after segmen-
tation [1], [2], [3], [4], [5], [6]. Because shapes of anatomical
objects are often only known approximately, and can undergo
non-rigid deformation, deformable models are required to
segment them. Deformable models [7] are widely used for
image segmentation, and have the ability to find single or
multiple objects within an image. After initialization, they are
attracted to and follow the contours of an object of interest,
defining the boundary of a ROI (Region Of Interest). How-
ever, these methods still have limitations when segmenting
objects, resulting in an imperfect shape, due to low image
quality or a cluttered scene.

The first deformable model was the snake model, pro-
posed by Kass et al. [7]. Snakes are commonly used in
contour-based image segmentation. They work based on
energy minimization [8]. Their drawbacks are the small
capture range, sensitivity to initialization and parameter
settings [9]. To address these problems, Zhou et al. [10]
proposed an interactive medical image segmentation tool,
combining snakes with multi-scale curve editing. Lank-
ton et al. [11] proposed a region-based active contour to
improve segmentation. Other deformable models are the
Charged-Particle Model (CPM) [12], which simulates posi-
tively charged particles moving on the negative field created
from the image gradient [13] and the Charged Fluid Model
(CFM), which simulates the distribution of charged fluid
elements along a propagating interface until equilibrium is
achieved [14].

The recent advances in medical image segmentation also
involve deep learning techniques, such as the U-Net archi-
tecture, a convolution neural network (CNN) architecture
designed for medical image segmentation [15].

In our case we are interested in segmentation and shape
recovery of the spine [16]. Spinal X-ray segmentation is a cru-
cial step to measure the Cobb angle that quantifies the spinal
curve severity of scoliotic patients. Currently, an orthopaedic
surgeon determines this angle manually based on the orienta-
tion of the two most tilted vertebrae or semi-automatic using
a computer-assisted radio-graphical measurement tool. These
methods show a relatively high error: The variations in Cobb
angle measurement is up to 11.8◦ for inter-observer error
and 6◦ for intra-observer error [17]. Such errors may hinder
proper diagnosis [18]. Several other problems in medical
image segmentation such as artifacts [19], noise, cluttered
images [20], diffuse organ or tissue boundaries [21] also
hamper segmentation [22]. A more automated segmentation
method such as a deformable model could be an option to
solve this problem and to improve the flexibility and accu-
racy [23], [24], [25].

Deformable models can be defined as particles, sur-
faces or curves, which move to follow object bound-
aries [26], [27] based on simulated forces. Mesejo et al. [28]

proposed a geometric deformable model combining region
and edge-based information with prior shape knowledge
introduced using deformable registration. Bogovic et al. [29]
reviewed multiple-object geometric deformable models for
image segmentation. Valverde et al. [30] segmented objects
in noisy images by defining a new energy function associ-
ated with image noise and avoiding the tendency of contour
points to bunch up. This model was validated on vessel
segmentation in mammograms. In related work, the PropSeg
Algorithm [31], [32] uses a propagating deformable model to
segment the spinal cord in T1-weighted MRI images. It is not
aimed at finding the spinal column in X-ray images, as we
aim to in this work.

However, in some exploratory experiments, we found that
previous methods could not follow the curvature of the spinal
column accurately. Figure 1 shows the results of CPM and
Gradient Vector Flow (GVF) snakes [33] on a spinal X-ray
image. By using CPM with automatic initialization (spread-
ing particles uniformly, Fig. 1(a)), the particles not only move
to the vertebrae, but also to other parts, such as ribs, etc.,
because there is no prior shape, as shown in Fig. 1(b). Using
a GVF snake, the initialization was put close to the vertebrae
(Fig. 1(c)), but the snake could not follow the curvature of the
spinal column and collapsed as shown in Fig. 1(d).

FIGURE 1. (a), (b) Initial position and segmentation result of CPM;
(c) and (d) Initial position and segmentation result of GVF snake, on a
spinal X-ray image.

The problem of CPM is that it is difficult to restrict the
particles to the object of interest without reducing the flex-
ibility, especially when there are many complex structures
in an image, such as in the case of spinal X-ray images.
This problem is caused by the lack of bonding between the
particles. In the result, we see several particles concentrated
in the higher negative field, while the others move away.

To overcome these problems, we propose the Spring
Charged-Particles Model (SCPM), a novel method based on
the movement of positively charged-particles connected by
springs, moving in the negative field created from a gradi-
ent image. This allows inclusion of prior knowledge of the
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shape of the objects of interest into the segmentation process,
by selecting the topology of the spring-particle configura-
tions. The elasticity of springs that are connected to positively
charged particles allows flexibility in the model to follow
the object of interest, even when boundaries are unclear. The
particles move towards higher negative potentials which are
based on the gradient image, as in CPM. The springs prevent
the particles from moving apart and limit the movement of
the particles at appropriate distances without reducing the
flexibility to follow the curvature. This new approach con-
tributes to enhancing shape recovery in many applications of
biomedical image segmentation [34].

II. THE SPRING-CHARGED-PARTICLES MODEL (SCPM)
Jalba et al. [12], introduced the Charged Particle Model
(CPM), inspired by the basic operation of electrodynamics.
The algorithm allows particles to move due to the Coulomb
and Lorentz forces, given by

EF(Eri) = EFCoulomb(Eri)+ EFLorentz(Eri) (1)

with Eri is the position of the particle. The Newtonian equation
of motion is used, i.e.,

Eai =
EF( Eri)
mi
=
d2Eri(t)
dt2

(2)

wheremi is the mass of particles pi, Evi and Eai are their velocity
and acceleration, respectively. The total forces, including
damping are given by

EF(Eri) = w1 EFCoulomb(Eri)+ w2 EFLorentz(Eri)− βEvi (3)

with w1 and w2 the weighting factors for Coulomb and
Lorentz force, and βEvi the damping or viscous factor. The
Coulomb force EFCoulomb on each particle pi is the total of all
Coulomb forces from other particles based on

EFCoulomb(Eri) = qi
N∑
j6=i

qj (Eri − Erj)
4πε0||Eri − Erj||3

(4)

The Lorentz force EFLorentz on particle pi with charge qi is
given by

EFLorentz(Eri) = qi

(
EE(Eri)+

Evi
c
× EB(Eri)

)
(5)

where Evi is the velocity of the particle, c is the speed of light,
EE(Eri) is electric field and EB(Eri) is the magnetic field. Because
there is no magnetic field, the Lorentz force becomes

EFLorentz(Eri) = qi EE(Eri) (6)

which is essentially the Coulomb force due to the distribution
of fixed charges in the image. SCPM introduces springs
between the particles with a certain configuration. Fig. 2
shows possible configurations of spring and particles. The
spring force EFSpring is given by Hooke’s Law, i.e.,

EFSpring = −kd EL, (7)

where k and d EL are the stiffness and deflection of the spring,
respectively. The total force in every particle is defined as

EF(Eri) = w1 EFCoulomb(Eri)+ w2 EFLorentz(Eri)

+w3 EFSpring(Eri)− βEvi, (8)

where w1, w2, and w3 are the weighting factors for those
forces; β is the viscous factor. The force caused by springs
on every particle is calculated based on

EFs(Eri) = −(kv(d ELv(i− 1)+ kvd ELv(i)) (9)

New positions and velocities for each particle are computed
by simple Euler integration using

Eri(t + dt) = Eri(t)+ Evi(t)dt (10)

and

Evi(t + dt) = Evi(t)+ Eai(t)dt. (11)

The springs maintain flexibility and let the particles move
to find the boundary. The configuration of springs is selected
according to the segmentation target.

SCPM consists of two sub-algorithms: the negative field
computation based on a grey level image, and the calculation
of forces in every particle, as shown in Fig. 3. The negative
field is calculated based on molecular dynamics simulation
using particle-particle particle-mesh method [35]. The result
of this calculation is a gradient map. The negative field is
created from the gradient map [Ex ,Ey]. We have developed
a negative field generator application that can be used to
calculate the negative field. This negative field will generate
the forces that will drive the positively charged particles into
the higher gradient areas.

In order to quantify the accuracy of the curvature areas
of a segmented spinal column, we perform an error analysis
by using a modified version of Over Merging Error (OM ),
Under-Merging Error (UM ) and Area Score (AS) [36], [37].
In the original method, the ground-truth segmentation is
divided into N segments, R1 . . .Rn, and the test segmentation
is divided into M segments, T1 . . . Tm. In our case study,
we only consider the spine segments R and T , and the values
of UM , OM , and AS were calculated as

UM =
(#R− #(T ∩ R))#(T ∩ R)

#R2
(12)

OM =
(#T − #(T ∩ R))#(T ∩ R)

#T 2 (13)

AS = 1−
√
UM2 + OM2 (14)

in which # denotes the cardinality of each set.

III. EXPERIMENTS
A. SIMPLE SHAPES
We investigated the influence of the weighting factors for
simple images. The weighting factor of the Coulomb force
has to be higher than that of the negative field in order to
give enough repelling force between particles. The weighting
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FIGURE 2. (a) Particles-springs structures, (b -e) several possible particle-spring configurations for SCPM.

FIGURE 3. Flowchart for (a) the internal force (negative field) and (b) the
external Coulomb and spring forces.

factors were determined by investigating the movement of the
particles to find the curvature. As initial evaluation, SCPM
was applied on synthetic images of simple shapes. The first
is an S-shape with a line width of 1 pixel and an image size of
100× 100 pixels, as shown in Fig. 4(a). The calculation of the
external field, based on the original image, is done separately.
Thirty positively charged particles, connected to each other
by springs, were placed in a vertical position.

The weighting factors w1 and w2 influence the interaction
force between the particles, while w3 keeps the particles in
a certain configuration without losing flexibility. We started
with w1, w3 = 0.1, and w2 = 0.001 w1. These weighting

TABLE 1. Parameter setting for an ‘‘S’’ and ‘‘U’’ shape image.

factors were varied until the particles showed an optimal
dynamic behavior, i.e. they were able to find the boundaries
of the ‘‘S’’ line. The time step dT and damping factor β
determine the speed of the particles movement. The lower
the value, the higher the particle speed. If the speed is too
low, the particles can be trapped in certain speckles with the
higher negative field. When the speed is too fast, the ‘‘S’’ line
would be missed. The optimal parameter values are shown in
Table 1.

SCPM was also tested on a ‘‘U’’ shape. For this purpose,
we used a spring-particle configuration as shown in Fig. 2(c).
The 120 positive particles, with a spring between 2 particles,
were put in a circular configuration using the same parameter
values.

B. CURVATURE DETERMINATION ON X-RAYS IMAGES
SCPM was applied on 50 spinal X-ray images. The original
X-ray images were resized to minimize processing time for
the negative field calculation. The elimination of uneven
background is needed to enhance its quality, particularly in
the thoracic area. Top-hat filtering andmodified top-hat filter-
ing were applied to try and solve this problem. The structural
element bn for top-hat filtering method is a disk-shaped mask
with size 1-5. The SCPM was applied on 50 sets of frontal
images with and without image pre-processing for spinal
segmentation, then visual inspection was done to determine
the best image pre-processing method. The morphological
top-hat filter fTH is defined as

fTH (f ) = f · bn − f (15)
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while the modified top-hat filter fModTH is defined as

fModTH (f ) = γ
f · bn − f
f · bn

(16)

in which · is the morphological structural closing operator,
γ is an attenuation factor, and bn a disk-shaped structural
element of radius n. The effect of modified tophat filtering
is shown in Fig. 7(a).

Fig. 2 (d and e) show the charged-particle-spring config-
uration used for curvature determination of the spine. These
were chosen because they restrict the vertical, horizontal and
in the latter case also diagonal distances between the particles.
For the initial positions of the particles, we put 2 fixed refer-
ence points on top and 2 at the bottom of the spinal area so
that the particles can be placed between those reference points
(see Fig. 7(b)). For two images with complicated curvature,
two additional references were required. The spring forces on
the initial particles (located in top and bottom; left and right)
are not calculated because these initial particle positions are
fixed.

The moving particles were connected to 5 springs: 2 verti-
cal, 1 horizontal and 2 diagonal. With the addition of multiple
spring types, the net force on each particle is

EF(Eri) = w1 EFCoulomb(Eri)+ w2 EFLorentz(Eri)

+w3 EFSh(Eri)+ w4 EFSv(Eri)

+w5 EFSd (Eri)− βEvi (17)

where EFsh, EFsv, EFsd are horizontal, vertical and diagonal
spring forces, w1−5 are weighting factors for each force and
is βEvi the viscous damping factor. The spring forces are
calculated according to (2), with spring constants kh, kv, and
kd which are all set to 1 N/m.
Several combinations of normalized weighing and damp-

ing factors have been investigated and the optimal values,
found by trial and error, are shown in Table 2.

TABLE 2. The optimal setting for a spinal image.

IV. RESULTS
A. SIMPLE SHAPE
The results of applying the SCPM on the ‘‘S’’ and ‘‘U’’ shape
are shown in Fig. 4(a). As expected, the particles are first
attracted towards the curve, and then they follow the curvature
properly. The position of the first particle is maintained until
the last particle arrives in the sequence position. Fig. 4(b)
shows the ‘‘S’’ shape image after corruption by Gaussian,
uniform and salt-&-pepper noise. The first particles attach
to the line and finally, all particles are attached. The mean

FIGURE 4. (a) SCPM applied on the simple ‘‘S’’ shapes; left-to-right:initial
position; particles attach to the object; final particles position; (b) The ‘‘S’’
shape after corruption by Gaussian (first row), uniform (second row) and
salt & pepper noise (third row).

TABLE 3. The mean error and standar deviation of simple shape with
noise.

errors and standard deviations of the results on simple shapes
with Gaussian, uniform and salt-&-pepper noise, are shown
in Table 3.

B. VALIDATION METHOD
Two observers placed left and right curvature landmarks on
all X-ray images. The inter-observer error was calculated.
The average positions were used as ground truth. By com-
paring for every X-ray the distance between these landmarks
and the particle positions, the error was calculated. The inter
observer error in placing manual landmarks is 1.45 pixels.

C. SPINAL CURVATURE SEGMENTATION
All four methods (SCPM, CFM, Active Contours, and
U-Net) were applied to segment the spine in 50 spinal X-ray
images. We used the spring configuration from figure 2(e),
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FIGURE 5. Initial position and segmentation results on the U-shape
image. Left to right: initial position, result of CFM, result of active contour,
and result of SCPM.

FIGURE 6. The effect of cross springs: (a) and (c) results obtained without
cross springs, showing areas where shear forces distort the spinal
curvature in circles; (b) and (d) results with cross springs on the same
images, showing a much smoother spinal segmentation.

because this prevents shear forces distorting the final spinal
curvature. This can be seen in figure 6, where parts (a) and (c)
show the results using the spring configuration from fig-
ure 2(d), and parts (b) and (d) show the results using
spring configuration from figure 2(e). The areas where
distortion due to shearing forces is evident are indicated
by a circle. Quite clearly, cross springs yield smoother
results.

Once the final configuration was determined, we com-
pared the results to manual segmentation. Manual landmark
placement was performed with an average error value of
1.45 pixels. The displacement between particle positions
and the manual landmarks on original images is on average
3.20 pixels. These errors can be reduced to 2.71 by using
modified tophat filtering according to (16) as preprocessing
step. The standard deviation of 2.18 also has been reduced to
1.00. The mean error results in pixels are shown in Fig. 8. In
48 frontal images the curvature was detected by SCPM using
four initial landmarks. Active Contours failed to perform the
spinal segmentation for all X-ray images because the contour
could not follow the curvature and moved to other objects.
CFM gave a better result than Active Contours to follow
curvature, however it could not strictly follow the spinal
curve.

FIGURE 7. (a) Left-to-right: the original image; and processed versions
using the modified tophat filter from (16) with 3 different attenuation
factors; (b) The particle positions on a spinal X-ray image of a scoliosis
patient, from left to right: Original Image; initial particle positions;
particles move to the curvature; final particle positions.

FIGURE 8. The error of original and pre-processed image. In most cases
preprocessing does not improve performance much, but difficult cases
are improved significantly.

D. COMPARISON TO OTHER METHODS
We compared SCPM, Active Contours, CFM, and U-Net to
evaluate their performance not only to find the curvature, but
also to improve shape recovery. CPM and GVF snakes were
excluded as initial experiments showed their failure on all
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FIGURE 9. Differences in initial positions and result for spinal image: (a), (b) Initial and result of CFM, (c), (d) Initial and result of active contour,
(e), (f) initial and result of SCPM. The latter only requires setting four points.

images. The results of SCPM to determine the curvature of
the spinal column from frontal X-Ray images were compared
with the results obtained using CFM, Active Contours, and
U-Net. The initial position of the particles was performed
manually for each method, and the final particle positions
were observed to determine the best results in terms of cur-
vature determination. Two points at the top and bottom of a
vertebra were needed to initialize particle position of SCPM.
These two particles can be created automatically. In CFM,
we must choose initial shapes (circle or rectangular) with a
certain size and put them manually along the spinal column.
In Active ContourMethods, we have to put points surrounded
the spinal column as an initial position. Fig. 9 shows the
initial position and results of all three deformable models.
We have tested the initialization sensitivity of each method
to evaluate which method is the easiest to apply and to eval-
uate how sensitive the result is to initial position placement.
SCPM shows to be the easiest because only requiring four
initial points. The results of curvature determination of spinal
X-Rays images are much more consistent in comparison to
the other two methods. The initialization for CFM and Active
Contour methods is much more complicated, takes more time
and is sensitive to initialization position.

U-net is shown separately, because we do not need any
initial position, whether point or curve. However, we must
prepare a data set consisting of manual ground truth images
and perform training, which takes time and a lot of computa-
tional effort. More data sets were needed if we would like to
have a better result.

U-Net is an convolution network for semantic segmen-
tation. The structure of the U-Net architecture consist of

convolution processes, activation functions, andmax pooling.
It has both a contraction path and an expansion path. Fig. 10
shows the U-Net architecture which was used to segment
spinal column of X-ray images. Fig. 11 shows different image
annotations for training: The line annotation only indicates
the boundary of the spine, whereas the area annotation indi-
cates the entire spinal column. Both were used in training
processes. The segmentation obtained with the line annota-
tion tended to fail. This is because U-Net was not successful
in identifying the line because the line thickness is only one
pixel as shown in Fig. 11(b). Area annotation gives much bet-
ter results (Fig. 11(c), however an edge detection was needed
after the segmentation process to get the spinal curvature
(Fig. 11(d)). This result is used as one of the comparisonswith
the proposed method. During the training and testing process
we divided 50 frontal images into 10 folds, where each fold
consists of 5 images for testing and 45 images for training.
For example, first fold contains fr1 to fr5 for testing, and fr6
to fr50 for training. Second fold 2 contains fr6 to fr10 for
testing, then fr1 to fr5 and fr11 to fr50 for training, and so on.

Table 4 shows the performance differences using Area
Score (AS), Under-Merging Error (UM), and Over Merging

TABLE 4. The performance differences: Area Score (AS), Under Merging
(UM), and Over Merging (OM).
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FIGURE 10. The U-Net architecture [38].

Error (OM). Quite clearly, SCPM outperforms the other
two methods in terms of Area Score (higher is better), and
Over-Merging Error (lower is better). The Area Scores for
SCPM, CFM, Active Contour, and U-Net are 0.837, 0.723,
0.705,and 0.682 respectively. The Under-Merging Error is
a bit higher for SCPM, but the overall performance is also
much more consistent, as indicated by the small inter-quartile
range. This is further supported by the differences in the
standard deviations in SCPM, CFM, Active Contour, and
U-Net, which are 0.028, 0.132, 0.131, and 0,039 respectively.
The T-Test result of Area Score SCPM-CFM is 5,93E-07,
higher than the T-Test result of Area Score SCPM-Active
Contour, which is 2,76E-09, while the value of T-Test of Area
Score SCPM-U-Net is 1,63E-20. Fig. 12 shows the box and

whisker chart of the performance differences analysis using
Area Score, Under Merging and Over merging error.

V. DISCUSSION
TheActive ContourMethod is not very accurate for determin-
ing simple shape curves. The shortcomings of this algorithm
that has been found such as small capture range and sensi-
tivity to initialization have been pointed out previously [33].
Fig. 5 shows the initial positions and segmentation results of
of CFM, Active Contour and SCPM on a U-Shape image.
CFM is not able to follow the narrow and sharp areas. The
particles tend to move around and finally stop at the top of
the image boundary. Active Contours show a better result;
however, it also has difficulty to segment the narrow and sharp
area properly. The implementation by U-Net architecture
with area annotation gives lowest area score, which shows
that its performance is not as good as the others. In contrast,
SCPM can follow the curvature of the U-shape image accu-
rately.

In general SCPM shows much better results. In case of
simple shapes, it is capable of easily following the curvature.
The average pixel error is very small for the pre-processed
image. As mentioned, methods such GVF snake and CPM
fail to perform spine segmentation on X-ray images, although
CFM and Active Contours can get reasonable results.

Although curvature determination using SCPM worked in
the vast majority of spinal X-ray images, it failed in two
image. Fig. 13 shows the initial positions and the results of
X-ray1 and X-ray2. These failures were caused by very weak
negative force or the particles on the right are stuck in the
lumbar areas and cannot move to the right. Adding more

FIGURE 11. Implementation of U-Net: (a) Line annotation, (b) result of line annotation, (c) area
annotation, (d) Edge detection result of area annotation.
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FIGURE 12. The performance differences analysis using area score, Under-merging error, and Over-merging error.

FIGURE 13. (a). Initial position of X-ray1; (b) Final particles position in
X-Ray1, (c). Initial position of X-ray2, (d). Final particles position in
X-Ray2.

FIGURE 14. (a). The negative field of X-ray1; (b), (c), (d), (e) The
magnification of the negative field in the dotted box.

manual landmarks can allow correct segmentation in these
cases. In addition, the direction of the negative field (Lorentz
force) in this area tends to be stuck on the left of L1 and L2.
Fig. 14 shows the negative field in those area that make the
positively particles locked. In the right edge area, the of the
image border, the negative field direction also tends to go to
the left. This makes it difficult for particles to move reach
those right part of those lumbar which is closed to the edges of
the image. Fig. 15 shows the negative field in the right edges
of the X-ray1 image. The problem that occurs in X-Ray2 is

FIGURE 15. (a). The negative field of X-ray1; (b), (c), (d), (e) The
magnification of the negative field in in the right edges of the X-ray1
image.

FIGURE 16. (a). The negative Field of X-ray2; (b), (c), (d), (e) The
magnification of the negative field in in the right edges of the X-ray2
image.

because the negative field in that area is not too strong tomove
positive particles to the left. This can be seen from the quiver
function in the area which is very small and tends to be non-
existent. Fig. 16 shows the negative field of X-Ray2. This is
because the area is blurry and tends to have the same gray
level value.

SCPM succeeds to determine 78% of the spinal curvatures
on unprocessed, original images. The simple image enhance-
ment method we use increases the percentage of successfully
detected curvatures up to 96%. In two cases the vertebral
position being too close to the boundary of the image, or sub-
optimal visibility of the vertebral structure, caused failure of
the particles to follow the curvature. This problem could be
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fixed with more fixed reference points. The cross springs are
essential for accurate segmentation.

VI. CONCLUSION AND FUTURE WORK
We have presented a new deformable model for image seg-
mentation called SPCM by introducing spring forces into the
charged particle model from Jalba et al. [12]. SCPM can cor-
rectly segment the curved spine of scoliosis patients in 96%
of the images with an average error of 2.71 pixels. SCPM also
has the capability to determine open or closed curves. Particle
spring configurations can be adapted as needed for other
object detection tasks. In this application, modified top-hat
filtering increased the number of detected spinal columns
significantly. The average Area Score on SCPM is 0.837,
CFM is 0.723, Active Contours is 0.705, and U-Net is 0.721.
Thus SCPMoutperforms the other methods we applied to this
problem. It is also comparatively easy to initialize, typically
only requiring that the user sets four initial points, two at
either end of the spine. The performance of U-Net could
possibly be improved with more training data, but this would
require a great deal more effort in annotating many more
spinal X-rays.

In future work, we will focus on curvature detection to
explore the use of SCPM not only on spinal X-ray images
in scoliosis, but also on other image modalities, such as
ultrasound. As one of the applications, we will focus on
automatic segmentation of radial arteries from ultrasound
images. A drawback of the current set-up is that the user
has to judge the result visually and possibly select alternative
pre-processing methods. We are investigating if it is possible
to avoid this by applying more advanced filters. In addition,
in the future the SCPM method may also be used to detect
tumors in MRI.
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