691 research outputs found
Mutations of the BRAF gene in human cancer
Cancers arise owing to the accumulation of mutations in critical genes that alter normal programmes of cell proliferation, differentiation and death. As the first stage of a systematic genome-wide screen for these genes, we have prioritized for analysis signalling pathways in which at least one gene is mutated in human cancer. The RAS RAF MEK ERK MAP kinase pathway mediates cellular responses to growth signals. RAS is mutated to an oncogenic form in about 15% of human cancer. The three RAF genes code for cytoplasmic serine/threonine kinases that are regulated by binding RAS. Here we report BRAF somatic missense mutations in 66% of malignant melanomas and at lower frequency in a wide range of human cancers. All mutations are within the kinase domain, with a single substitution (V599E) accounting for 80%. Mutated BRAF proteins have elevated kinase activity and are transforming in NIH3T3 cells. Furthermore, RAS function is not required for the growth of cancer cell lines with the V599E mutation. As BRAF is a serine/threonine kinase that is commonly activated by somatic point mutation in human cancer, it may provide new therapeutic opportunities in malignant melanoma
Primordialists and Constructionists: a typology of theories of religion
This article adopts categories from nationalism theory to classify theories of religion. Primordialist explanations are grounded in evolutionary psychology and emphasize the innate human demand for religion. Primordialists predict that religion does not decline in the modern era but will endure in perpetuity. Constructionist theories argue that religious demand is a human construct. Modernity initially energizes religion, but subsequently undermines it. Unpacking these ideal types is necessary in order to describe actual theorists of religion. Three distinctions within primordialism and constructionism are relevant. Namely those distinguishing: a) materialist from symbolist forms of constructionism; b) theories of origins from those pertaining to the reproduction of religion; and c) within reproduction, between theories of religious persistence and secularization. This typology helps to make sense of theories of religion by classifying them on the basis of their causal mechanisms, chronology and effects. In so doing, it opens up new sightlines for theory and research
Phenomenology of the Lense-Thirring effect in the Solar System
Recent years have seen increasing efforts to directly measure some aspects of
the general relativistic gravitomagnetic interaction in several astronomical
scenarios in the solar system. After briefly overviewing the concept of
gravitomagnetism from a theoretical point of view, we review the performed or
proposed attempts to detect the Lense-Thirring effect affecting the orbital
motions of natural and artificial bodies in the gravitational fields of the
Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of
the impact of several sources of systematic uncertainties of dynamical origin
to realistically elucidate the present and future perspectives in directly
measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in
Astrophysics and Space Science (ApSS). Some uncited references in the text
now correctly quoted. One reference added. A footnote adde
Theoretical analysis of neutron scattering results for quasi-two dimensional ferromagnets
A theoretical study has been carried out to analyse the available results
from the inelastic neutron scattering experiment performed on a quasi-two
dimensional spin-1/2 ferromagnetic material . Our formalism is based
on a conventional semi-classical like treatment involving a model of an ideal
gas of vortices/anti-vortices corresponding to an anisotropic XY Heisenberg
ferromagnet on a square lattice. The results for dynamical structure functions
for our model corresponding to spin-1/2, show occurrence of negative values in
a large range of energy transfer even encompassing the experimental range, when
convoluted with a realistic spectral window function. This result indicates
failure of the conventional theoretical framework to be applicable to the
experimental situation corresponding to low spin systems. A full quantum
formalism seems essential for treating such systems.Comment: 16 pages, 6 figures, 1 Table Submitted for publicatio
The 3-Band Hubbard-Model versus the 1-Band Model for the high-Tc Cuprates: Pairing Dynamics, Superconductivity and the Ground-State Phase Diagram
One central challenge in high- superconductivity (SC) is to derive a
detailed understanding for the specific role of the - and
- orbital degrees of freedom. In most theoretical studies an
effective one-band Hubbard (1BH) or t-J model has been used. Here, the physics
is that of doping into a Mott-insulator, whereas the actual high- cuprates
are doped charge-transfer insulators. To shed light on the related question,
where the material-dependent physics enters, we compare the competing magnetic
and superconducting phases in the ground state, the single- and two-particle
excitations and, in particular, the pairing interaction and its dynamics in the
three-band Hubbard (3BH) and 1BH-models. Using a cluster embedding scheme, i.e.
the variational cluster approach (VCA), we find which frequencies are relevant
for pairing in the two models as a function of interaction strength and doping:
in the 3BH-models the interaction in the low- to optimal-doping regime is
dominated by retarded pairing due to low-energy spin fluctuations with
surprisingly little influence of inter-band (p-d charge) fluctuations. On the
other hand, in the 1BH-model, in addition a part comes from "high-energy"
excited states (Hubbard band), which may be identified with a non-retarded
contribution. We find these differences between a charge-transfer and a Mott
insulator to be renormalized away for the ground-state phase diagram of the
3BH- and 1BH-models, which are in close overall agreement, i.e. are
"universal". On the other hand, we expect the differences - and thus, the
material dependence to show up in the "non-universal" finite-T phase diagram
(-values).Comment: 17 pages, 9 figure
Comparison of advanced gravitational-wave detectors
We compare two advanced designs for gravitational-wave antennas in terms of
their ability to detect two possible gravitational wave sources. Spherical,
resonant mass antennas and interferometers incorporating resonant sideband
extraction (RSE) were modeled using experimentally measurable parameters. The
signal-to-noise ratio of each detector for a binary neutron star system and a
rapidly rotating stellar core were calculated. For a range of plausible
parameters we found that the advanced LIGO interferometer incorporating RSE
gave higher signal-to-noise ratios than a spherical detector resonant at the
same frequency for both sources. Spheres were found to be sensitive to these
sources at distances beyond our galaxy. Interferometers were sensitive to these
sources at far enough distances that several events per year would be expected
Optical Properties of III-Mn-V Ferromagnetic Semiconductors
We review the first decade of extensive optical studies of ferromagnetic,
III-Mn-V diluted magnetic semiconductors. Mn introduces holes and local moments
to the III-V host, which can result in carrier mediated ferromagnetism in these
disordered semiconductors. Spectroscopic experiments provide direct access to
the strength and nature of the exchange between holes and local moments; the
degree of itineracy of the carriers; and the evolution of the states at the
Fermi energy with doping. Taken together, diversity of optical methods reveal
that Mn is an unconventional dopant, in that the metal to insulator transition
is governed by the strength of the hybridization between Mn and its p-nictogen
neighbor. The interplay between the optical, electronic and magnetic properties
of III-Mn-V magnetic semiconductors is of fundamental interest and may enable
future spin-optoelectronic devices.Comment: Topical Revie
Measurement of charm production at central rapidity in proton-proton collisions at TeV
The -differential production cross sections of the prompt (B
feed-down subtracted) charmed mesons D, D, and D in the rapidity
range , and for transverse momentum GeV/, were
measured in proton-proton collisions at TeV with the ALICE
detector at the Large Hadron Collider. The analysis exploited the hadronic
decays DK, DK, DD, and their charge conjugates, and was performed on a
nb event sample collected in 2011 with a
minimum-bias trigger. The total charm production cross section at TeV and at 7 TeV was evaluated by extrapolating to the full phase space
the -differential production cross sections at TeV
and our previous measurements at TeV. The results were compared
to existing measurements and to perturbative-QCD calculations. The fraction of
cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/307
Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at = 2.76 TeV
The yield of charged particles associated with high- trigger
particles ( GeV/) is measured with the ALICE detector in
Pb-Pb collisions at = 2.76 TeV relative to proton-proton
collisions at the same energy. The conditional per-trigger yields are extracted
from the narrow jet-like correlation peaks in azimuthal di-hadron correlations.
In the 5% most central collisions, we observe that the yield of associated
charged particles with transverse momenta GeV/ on the
away-side drops to about 60% of that observed in pp collisions, while on the
near-side a moderate enhancement of 20-30% is found.Comment: 15 pages, 2 captioned figures, 1 table, authors from page 10,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/350
Condutividade elétrica e acidificação de águas usadas na aplicação de herbicidas no Rio Grande do Sul
- …
