31 research outputs found

    Graph Neural Network Flavour Tagging and Boosted Higgs Measurements at the LHC

    Get PDF
    This thesis presents investigations into the challenges of, and potential improvements to, b-jet identification (b-tagging) at the ATLAS experiment at the Large Hadron Collider (LHC). The presence of b-jets is a key signature of many interesting physics processes such as the production of Higgs bosons, which preferentially decay to a pair of b-quarks. In this thesis, a particular focus is placed on the high transverse momentum regime, which is a critical region in which to study the Higgs boson and the wider Standard Model, but also a region within which b-tagging becomes increasingly difficult. As b-tagging relies on the accurate reconstruction of charged particle trajectories (tracks), the tracking performance is investigated and potential improvements are assessed. Track reconstruction becomes increasingly difficult at high transverse momentum due to the in- creased multiplicity and collimation of tracks, and also due to the presence of displaced tracks from the decay of a long-flying b-hadron. The investigations reveal that the quality selections applied during track reconstruction are suboptimal for b-hadron decay tracks inside high transverse momentum b-jets, motivating future studies into the optimisation of these selections. Two novel approaches are developed to improve b-tagging performance. Firstly, an algorithm which is able to classify the origin of tracks is used to select a more optimal set of tracks for input to the b-tagging algorithms. Secondly, a graph neural network (GNN) jet flavour tagging algorithm has been developed. This algorithm directly accepts jets and tracks as inputs, making a break from previous algorithms which relied on the outputs of intermediate taggers. The model is trained to simultaneously predict the jet flavour, track origins, and the spatial track-pair compatibility, and demonstrates marked improvements in b-tagging performance both at low and high transverse momenta. The closely related task of c-jet identification also benefits from this approach. Analysis of high transverse momentum H → bb decays, where the Higgs boson is produced in association with a vector boson, was performed using 139 fb−1 of 13 TeV proton-proton collision data from Run 2 of the LHC. This analysis provided first measurements of the V H, H → bb process in two high transverse momentum regions, and is described with a particular focus on the background modelling studies performed by the author

    Vertex Reconstruction with MaskFormers

    Full text link
    In high-energy particle collisions, secondary decays can be reconstructed as displaced vertices using the measured trajectories of charged particles. Such vertices are useful in identifying and studying jets originating from bb- or cc-hadrons, which is a key component of the physics programs of modern collider experiments. While machine learning has become mainstream in particle physics, most applications are on an per-object basis, for example the prediction of class labels or the regression of object properties. However, vertex reconstruction is a many-to-many problem, in which a set of input tracks must be grouped into a second variable length set of vertices. In this work, we propose a fully learned approach to reconstruct secondary vertices inside jets based on recent advancements in object detection from computer vision. We demonstrate and discuss the advantages of this approach, in particular its ability to estimate the properties of any number of vertices, and conclude that the same methodology could be applicable to other reconstruction tasks in particle physics.Comment: 10 pages, 5 figure

    pyveg: A Python package for analysing the time evolution of patterned vegetation using Google Earth Engine

    Get PDF
    Periodic vegetation patterns (PVP) arise from the interplay between forces that drive the growth and mortality of plants. Inter-plant competition for resources, in particular water, can lead to the formation of PVP. Arid and semi-arid ecosystems may be under threat due to changing precipitation dynamics driven by macroscopic changes in climate. These regions display some noteable examples of PVP, for example the “tiger bush” patterns found in West Africa. The morphology of the periodic pattern has been suggested to be linked to the resilience of the ecosystem (Mander et al., 2017; Trichon et al., 2018). Using remote sensing techniques, vegetation patterns in these regions can be studied, and an analysis of the resilience of the ecosystem can be performed. The pyveg package implements functionality to download and process data from Google Earth Engine (GEE), and to subsequently perform a resilience analysis on the aquired data. PVP images are quantified using network centrality metrics. The results of the analysis can be used to search for typical early warning signals of an ecological collapse (Dakos et al., 2008). Google Earth Engine Editor scripts are also provided to help researchers discover locations of ecosystems which may be in decline. pyveg is being developed as part of a research project looking for evidence of early warning signals of ecosystem collapse using remote sensing data. pyveg allows such research to be carried out at scale, and hence can be an important tool in understanding changing arid and semi-arid ecosystem dynamics. An evolving list of PVP locations, obtained through both literature and manual searches, is included in the package at pyveg/coordinates.py. The structure of the package is outlined in Figure 1, and is discussed in more detail in the following sections

    Quantitatively monitoring the resilience of patterned vegetation in the Sahel

    Get PDF
    Patterning of vegetation in drylands is a consequence of localized feedback mechanisms. Such feedbacks also determine ecosystem resilience—i.e. the ability to recover from perturbation. Hence, the patterning of vegetation has been hypothesized to be an indicator of resilience, that is, spots are less resilient than labyrinths. Previous studies have made this qualitative link and used models to quantitatively explore it, but few have quantitatively analysed available data to test the hypothesis. Here we provide methods for quantitatively monitoring the resilience of patterned vegetation, applied to 40 sites in the Sahel (a mix of previously identified and new ones). We show that an existing quantification of vegetation patterns in terms of a feature vector metric can effectively distinguish gaps, labyrinths, spots, and a novel category of spot–labyrinths at their maximum extent, whereas NDVI does not. The feature vector pattern metric correlates with mean precipitation. We then explored two approaches to measuring resilience. First we treated the rainy season as a perturbation and examined the subsequent rate of decay of patterns and NDVI as possible measures of resilience. This showed faster decay rates—conventionally interpreted as greater resilience—associated with wetter, more vegetated sites. Second we detrended the seasonal cycle and examined temporal autocorrelation and variance of the residuals as possible measures of resilience. Autocorrelation and variance of our pattern metric increase with declining mean precipitation, consistent with loss of resilience. Thus, drier sites appear less resilient, but we find no significant correlation between the mean or maximum value of the pattern metric (and associated morphological pattern types) and either of our measures of resilience

    Language endangerment and language documentation in Africa

    Get PDF
    Non peer reviewe

    Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial

    Get PDF
    Background: Short-term treatment for people with type 2 diabetes using a low dose of the selective endothelin A receptor antagonist atrasentan reduces albuminuria without causing significant sodium retention. We report the long-term effects of treatment with atrasentan on major renal outcomes. Methods: We did this double-blind, randomised, placebo-controlled trial at 689 sites in 41 countries. We enrolled adults aged 18–85 years with type 2 diabetes, estimated glomerular filtration rate (eGFR)25–75 mL/min per 1·73 m 2 of body surface area, and a urine albumin-to-creatinine ratio (UACR)of 300–5000 mg/g who had received maximum labelled or tolerated renin–angiotensin system inhibition for at least 4 weeks. Participants were given atrasentan 0·75 mg orally daily during an enrichment period before random group assignment. Those with a UACR decrease of at least 30% with no substantial fluid retention during the enrichment period (responders)were included in the double-blind treatment period. Responders were randomly assigned to receive either atrasentan 0·75 mg orally daily or placebo. All patients and investigators were masked to treatment assignment. The primary endpoint was a composite of doubling of serum creatinine (sustained for ≄30 days)or end-stage kidney disease (eGFR <15 mL/min per 1·73 m 2 sustained for ≄90 days, chronic dialysis for ≄90 days, kidney transplantation, or death from kidney failure)in the intention-to-treat population of all responders. Safety was assessed in all patients who received at least one dose of their assigned study treatment. The study is registered with ClinicalTrials.gov, number NCT01858532. Findings: Between May 17, 2013, and July 13, 2017, 11 087 patients were screened; 5117 entered the enrichment period, and 4711 completed the enrichment period. Of these, 2648 patients were responders and were randomly assigned to the atrasentan group (n=1325)or placebo group (n=1323). Median follow-up was 2·2 years (IQR 1·4–2·9). 79 (6·0%)of 1325 patients in the atrasentan group and 105 (7·9%)of 1323 in the placebo group had a primary composite renal endpoint event (hazard ratio [HR]0·65 [95% CI 0·49–0·88]; p=0·0047). Fluid retention and anaemia adverse events, which have been previously attributed to endothelin receptor antagonists, were more frequent in the atrasentan group than in the placebo group. Hospital admission for heart failure occurred in 47 (3·5%)of 1325 patients in the atrasentan group and 34 (2·6%)of 1323 patients in the placebo group (HR 1·33 [95% CI 0·85–2·07]; p=0·208). 58 (4·4%)patients in the atrasentan group and 52 (3·9%)in the placebo group died (HR 1·09 [95% CI 0·75–1·59]; p=0·65). Interpretation: Atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease who were selected to optimise efficacy and safety. These data support a potential role for selective endothelin receptor antagonists in protecting renal function in patients with type 2 diabetes at high risk of developing end-stage kidney disease. Funding: AbbVie

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to &lt;90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], &gt;300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of &lt;15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P&lt;0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P&lt;0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease

    Get PDF
    One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≄3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials
    corecore