51 research outputs found

    Leukocyte migration in experimental inflammatory bowel disease

    Get PDF
    Emigration of leukocytes from the circulation into tissue by transendothelial migration, is mediated subsequently by adhesion molecules such as selectins, chemokines and integrins. This multistep paradigm, with multiple molecular choices at each step, provides a diversity in signals. The influx of neutrophils, monocytes and lymphocytes into inflamed tissue is important in the pathogenesis of chronic inflammatory bowel disease. The importance of each of these groups of adhesion molecules in chronic inflammatory bowel disease, either in human disease or in animal models, will be discussed below. Furthermore, the possibilities of blocking these different steps in the process of leukocyte extravasation in an attempt to prevent further tissue damage, will be taken into account

    Comparative Studies in the A30P and A53T α-Synuclein C. elegans Strains to Investigate the Molecular Origins of Parkinson's Disease.

    Get PDF
    The aggregation of α-synuclein is a hallmark of Parkinson's disease (PD) and a variety of related neurological disorders. A number of mutations in this protein, including A30P and A53T, are associated with familial forms of the disease. Patients carrying the A30P mutation typically exhibit a similar age of onset and symptoms as sporadic PD, while those carrying the A53T mutation generally have an earlier age of onset and an accelerated progression. We report two C. elegans models of PD (PDA30P and PDA53T), which express these mutational variants in the muscle cells, and probed their behavior relative to animals expressing the wild-type protein (PDWT). PDA30P worms showed a reduced speed of movement and an increased paralysis rate, control worms, but no change in the frequency of body bends. By contrast, in PDA53T worms both speed and frequency of body bends were significantly decreased, and paralysis rate was increased. α-Synuclein was also observed to be less well localized into aggregates in PDA30P worms compared to PDA53T and PDWT worms, and amyloid-like features were evident later in the life of the animals, despite comparable levels of expression of α-synuclein. Furthermore, squalamine, a natural product currently in clinical trials for treating symptomatic aspects of PD, was found to reduce significantly the aggregation of α-synuclein and its associated toxicity in PDA53T and PDWT worms, but had less marked effects in PDA30P. In addition, using an antibody that targets the N-terminal region of α-synuclein, we observed a suppression of toxicity in PDA30P, PDA53T and PDWT worms. These results illustrate the use of these two C. elegans models in fundamental and applied PD research

    Diversity of Raft-Like Domains in Late Endosomes

    Get PDF
    BACKGROUND: Late endosomes, the last sorting station in the endocytic pathway before lysosomes, are pleiomorphic organelles composed of tubular elements as well as vesicular regions with a characteristic multivesicular appearance, which play a crucial role in intracellular trafficking. Here, we have investigated whether, in addition to these morphologically distinguishable regions, late endosomal membranes are additionally sub-compartmentalized into membrane microdomains. METHODOLOGY/PRINCIPAL FINDINGS: Using sub-organellar fractionation techniques, both with and without detergents, combined with electron microscopy, we found that both the limiting membrane of the organel and the intraluminal vesicles contain raft-type membrane domains. Interestingly, these differentially localized domains vary in protein composition and physico-chemical properties. CONCLUSIONS/SIGNIFICANCE: In addition to the multivesicular organization, we find that late endosomes contain cholesterol rich microdomains both on their limiting membrane and their intraluminal vesicles that differ in composition and properties. Implications of these findings for late endosomal functions are discussed

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Macronodular adrenocortical hyperplasia in a postmenopausal woman

    No full text
    This case report describes the diagnosis of Cushing's syndrome due to macronodular adrenal hyperplasia in an elderly woman who presented with fatigue, muscle weakness and oedema, and recent excessive bruising. Long-standing disease and comorbidity precluded adrenalectomy. Despite treatment with metyrapone and diuretics, the patient died after two months hospitalisation. Postmortal examination revealed overexpression of luteinising hormone (LH) receptors in the adrenal glands, suggesting that the postmenopausal rise in LH may have a role in adrenal hyperplasia and hypercortisolism

    The increasing importance of LNAA supplementation in phenylketonuria at higher plasma phenylalanine concentrations

    Get PDF
    BACKGROUND: Large neutral amino acid (LNAA) treatment has been suggested as alternative to the burdensome severe phenylalanine-restricted diet. While its working mechanisms and optimal composition have recently been further elucidated, the question whether LNAA treatment requires the natural protein-restricted diet, has still remained. OBJECTIVE: Firstly, to determine whether an additional liberalized natural protein-restricted diet could further improve brain amino acid and monoamine concentrations in phenylketonuria mice on LNAA treatment. Secondly, to compare the effect between LNAA treatment (without natural protein) restriction and different levels of a phenylalanine-restricted diet (without LNAA treatment) on brain amino acid and monoamine concentrations in phenylketonuria mice. DESIGN: BTBR Pah-enu2 mice were divided into two experimental groups that received LNAA treatment with either an unrestricted or semi phenylalanine-restricted diet. Control groups included Pah-enu2 mice on the AIN-93 M diet, a severe or semi phenylalanine-restricted diet without LNAA treatment, and wild-type mice receiving the AIN-93 M diet. After ten weeks, brain and plasma samples were collected to measure amino acid profiles and brain monoaminergic neurotransmitter concentrations. RESULTS: Adding a semi phenylalanine-restricted diet to LNAA treatment resulted in lower plasma phenylalanine but comparable brain amino acid and monoamine concentrations as compared to LNAA treatment (without phenylalanine restriction). LNAA treatment (without phenylalanine restriction) resulted in comparable brain monoamine but higher brain phenylalanine concentrations compared to the severe phenylalanine-restricted diet, and significantly higher brain monoamine but comparable phenylalanine concentrations as compared to the semi phenylalanine-restricted diet. CONCLUSIONS: Present results in PKU mice suggest that LNAA treatment in PKU patients does not need the phenylalanine-restricted diet. In PKU mice, LNAA treatment (without phenylalanine restriction) was comparable to a severe phenylalanine-restricted diet with respect to brain monoamine concentrations, notwithstanding the higher plasma and brain phenylalanine concentrations, and resulted in comparable brain phenylalanine concentrations as on a semi phenylalanine-restricted diet
    corecore