102 research outputs found

    Extraribosomal functions associated with the C terminus of the 37/67 kDa laminin receptor are required for maintaining cell viability

    Get PDF
    The 37/67 kDa laminin receptor (LAMR) is a multifunctional protein, acting as an extracellular receptor, localizing to the nucleus, and playing roles in rRNA processing and ribosome assembly. LAMR is important for cell viability; however, it is unclear which of its functions are essential. We developed a silent mutant LAMR construct, resistant to siRNA, to rescue the phenotypic effects of knocking down endogenous LAMR, which include inhibition of protein synthesis, cell cycle arrest, and apoptosis. In addition, we generated a C-terminal-truncated silent mutant LAMR construct structurally homologous to the Archaeoglobus fulgidus S2 ribosomal protein and missing the C-terminal 75 residues of LAMR, which displays more sequence divergence. We found that HT1080 cells stably expressing either silent mutant LAMR construct still undergo arrest in the G1 phase of the cell cycle when treated with siRNA. However, the expression of full-length silent mutant LAMR rescues cell viability, whereas the expression of the C-terminal-truncated LAMR does not. Interestingly, we also found that both silent mutant constructs restore protein translation and localize to the nucleus. Our findings indicate that the ability of LAMR to regulate viability is associated with its C-terminal 75 residues. Furthermore, this function is distinct from its role in cell proliferation, independent of its ribosomal functions, and may be regulated by a nonnuclear localization

    Green Tea Polyphenol EGCG Sensing Motif on the 67-kDa Laminin Receptor

    Get PDF
    BACKGROUND: We previously identified the 67-kDa laminin receptor (67LR) as the cell-surface receptor conferring the major green tea polyphenol (-)-epigallocatechin-3-O-gallate (EGCG) responsiveness to cancer cells. However, the underlying mechanism for interaction between EGCG and 67LR remains unclear. In this study, we investigated the possible role of EGCG-67LR interaction responsible for its bioactivities. METHODOLOGY/PRINCIPAL FINDINGS: We synthesized various peptides deduced from the extracellular domain corresponding to the 102-295 region of human 67LR encoding a 295-amino acid. The neutralizing activity of these peptides toward EGCG cell-surface binding and inhibition of cancer cell growth were assayed. Both activities were inhibited by a peptide containing the 10-amino acid residues, IPCNNKGAHS, corresponding to residues 161-170. Furthermore, mass spectrometric analysis revealed the formation of a EGCG-LR161-170 peptide complex. A study of the amino acid deletion/replacement of the peptide LR161-170 indicated that the 10-amino acid length and two basic amino acids, K(166) and H(169), have a critical role in neutralizing EGCG's activities. Moreover, neutralizing activity against the anti-proliferation action of EGCG was observed in a recombinant protein of the extracellular domain of 67LR, and this effect was abrogated by a deletion of residues 161-170. These findings support that the 10 amino-acid sequence, IPCNNKGAHS, might be the functional domain responsible for the anti-cancer activity of EGCG. CONCLUSIONS/SIGNIFICANCE: Overall, our results highlight the nature of the EGCG-67LR interaction and provide novel structural insights into the understanding of 67LR-mediated functions of EGCG, and could aid in the development of potential anti-cancer compounds for chemopreventive or therapeutic uses that can mimic EGCG-67LR interactions

    Interactions Between Laminin Receptor and the Cytoskeleton During Translation and Cell Motility

    Get PDF
    Human laminin receptor acts as both a component of the 40S ribosomal subunit to mediate cellular translation and as a cell surface receptor that interacts with components of the extracellular matrix. Due to its role as the cell surface receptor for several viruses and its overexpression in several types of cancer, laminin receptor is a pathologically significant protein. Previous studies have determined that ribosomes are associated with components of the cytoskeleton, however the specific ribosomal component(s) responsible has not been determined. Our studies show that laminin receptor binds directly to tubulin. Through the use of siRNA and cytoskeletal inhibitors we demonstrate that laminin receptor acts as a tethering protein, holding the ribosome to tubulin, which is integral to cellular translation. Our studies also show that laminin receptor is capable of binding directly to actin. Through the use of siRNA and cytoskeletal inhibitors we have shown that this laminin receptor-actin interaction is critical for cell migration. These data indicate that interactions between laminin receptor and the cytoskeleton are vital in mediating two processes that are intimately linked to cancer, cellular translation and migration

    Prognostic impact of FAS/CD95/APO-1 in urothelial cancers: decreased expression of Fas is associated with disease progression

    Get PDF
    The death receptor Fas (Apo1/CD95) and Fas ligand (FasL) system is recognised as a major pathway for the induction of apoptosis in vivo, and antiapoptosis via its blockade plays a critical role in carcinogenesis and progression in several malignancies. However, the function of Fas–FasL system in urothelial cancer (UC) has not been elucidated. We therefore investigated the expression of Fas, FasL and Decoy receptor 3 for FasL (DcR3) in UC specimens and cell lines, and examined the cytotoxic effect of an anti-Fas-activating monoclonal antibody (mAb) in vitro. Immunohistochemical examinations of Fas-related molecules were performed on 123 UC and 30 normal urothelium surgical specimens. Normal urothelium showed Fas staining in the cell membrane and cytoplasm. In UC, less frequent Fas expression was significantly associated with a higher pathological grade (P<0.0001), a more advanced stage (P=0.023) and poorer prognosis (P=0.010). Fas and the absence thereof were suggested to be crucial factors with which to select patients requiring more aggressive treatment. Moreover, low-dose anti-Fas-activating mAb sensitised resistant cells to adriamycin, and this synergistic effect could be applied in the development of new treatment strategy for UC patients with multidrug-resistant tumours

    Beta-Amyloid Peptides Enhance the Proliferative Response of Activated CD4+CD28+ Lymphocytes from Alzheimer Disease Patients and from Healthy Elderly

    Get PDF
    Alzheimer's disease (AD) is the most frequent form of dementia among elderly. Despite the vast amount of literature on non-specific immune mechanisms in AD there is still little information about the potential antigen-specific immune response in this pathology. It is known that early stages of AD include β-amyloid (Aβ)- reactive antibodies production and inflammatory response. Despite some evidence gathered proving cellular immune response background in AD pathology, the specific reactions of CD4+ and CD8+ cells remain unknown as the previous investigations yielded conflicting results. Here we investigated the CD4+CD28+ population of human peripheral blood T cells and showed that soluble β-amyloids alone were unable to stimulate these cells to proliferate significantly, resulting only in minor, probably antigen-specific, proliferative response. On the other hand, the exposure of in vitro pre-stimulated lymphocytes to soluble Aβ peptides significantly enhanced the proliferative response of these cells which had also lead to increased levels of TNF, IL-10 and IL-6. We also proved that Aβ peptide-enhanced proliferative response of CD4+CD28+ cells is autonomous and independent from disease status while being associated with the initial, ex vivo activation status of the CD4+ cells. In conclusion, we suggest that the effect of Aβ peptides on the immune system of AD patients does not depend on the specific reactivity to Aβ epitope(s), but is rather a consequence of an unspecific modulation of the cell cycle dynamics and cytokine production by T cells, occurring simultaneously in a huge proportion of Aβ peptide-exposed T lymphocytes and affecting the immune system performance

    Clinicopathological significance of mitochondrial D-Loop mutations in head and neck carcinoma

    Get PDF
    Mitochondrial DNA mutations have been reported in several types of tumours, including head and neck squamous cell carcinoma (HNSCC). The noncoding region of the Displacement-Loop (D-Loop) has emerged as a mutational hotspot and we recently found that they were associated with prognosis and response to 5 fluorouracil (5FU) in colon cancers. In order to evaluate the frequence of D-Loop mutations in a large series of HNSCC and establish correlations with clinicopathologic parameters, we sequenced the D-Loop of 109 HNSCC before a treatment by neoadjuvant 5FU-cisplatin-based chemotherapy and surgery. Then, we correlated these mutations with prognosis and response to chemotherapy. A D-Loop mutation was identified in 21% of the tumors, the majority of them were located in a C-tract (D310). The prevalence of D310 mutations increased significantly with the number of cytosines in the matched normal tissue sequence (P=0.02). Hypopharyngeal cancer was significantly more frequent (P=0.03) and tobacco consumption more important (P=0.01) in the group of patients with D-Loop mutation. The presence of D-Loop mutation was not associated with prognosis or with response to neoadjuvant chemotherapy. These results suggest that D-Loop mutations should be considered as a cancer biomarker that may be useful for the early detection of HNSCC in individuals at risk of this cancer

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Resource efficiency in practice : closing mineral cycles : final report

    No full text
    Nutrients such as nitrogen (N), phosphorus (P) and potassium (K) are essential elements for living organisms, including plants, animals and bacteria. They are used as fertilisers in agriculture to guarantee high yields and quality products. However, the increasing demand not only in food production, but also in feed, fibre and fuel, has resulted in an increasing use of N, P and K. The depletion of non-renewable resources (such as mined phosphates rock) jeopardises the viability of the current agricultural production systems in the long term. In addition, while progress has been made towards sustainable agricultural practices, a number of inefficiencies are observed in nutrient use which can lead to the degradation of land, soil and water resources. Ultimately, this can impede well-being and economic growth from farm level to EU level. In this context, the first objective of the project \u201cResource efficiency in practice \u2013 Closing mineral cycles\u201d was to identify the most promising measures at regional and farm levels, in particular in nutrient saturated areas, to improve the use of nutrients and to reduce their negative impacts. The second objective was to communicate the information gathered to farmers, farmers\u2019 associations, and regional decision-makers in an educational style to empower them to take action at their level. Communication channels included leaflets, a dedicated website (http://mineral-cycles.eu) and four regional conferences, as well as a final conference in Brussels
    corecore