778 research outputs found
The Roman Bridge: a "double pulley – suture bridges" technique for rotator cuff repair
<p>Abstract</p> <p>Background</p> <p>With advances in arthroscopic surgery, many techniques have been developed to increase the tendon-bone contact area, reconstituting a more anatomic configuration of the rotator cuff footprint and providing a better environment for tendon healing.</p> <p>Methods</p> <p>We present an arthroscopic rotator cuff repair technique which uses suture bridges to optimize rotator cuff tendon-footprint contact area and mean pressure.</p> <p>Results</p> <p>Two medial row 5.5-mm Bio-Corkscrew suture anchors (Arthrex, Naples, FL), which are double-loaded with No. 2 FiberWire sutures (Arthrex, Naples, FL), are placed in the medial aspect of the footprint. Two suture limbs from a single suture are both passed through a single point in the rotator cuff. This is performed for both anchors. The medial row sutures are tied using the double pulley technique. A suture limb is retrieved from each of the medial anchors through the lateral portal, and manually tied as a six-throw surgeon's knot over a metal rod. The two free suture limbs are pulled to transport the knot over the top of the tendon bridge. Then the two free suture limbs that were used to pull the knot down are tied. The end of the sutures are cut. The same double pulley technique is repeated for the other two suture limbs from the two medial anchors, but the two free suture limbs are used to produce suture bridges over the tendon, by means of a Pushlock (Arthrex, Naples, FL), placed 1 cm distal to the lateral edge of the footprint.</p> <p>Conclusion</p> <p>This technique maximizes the advantages of two techniques. On the one hand, the double pulley technique provides an extremely secure fixation in the medial aspect of the footprint. On the other hand, the suture bridges allow to improve pressurized contact area and mean footprint pressure. In this way, the bony footprint in not compromised by the distal-lateral fixation, and it is thus possible to share the load between fixation points. This maximizes the strength of the repair and provides a barrier preventing penetration of synovial fluid into the healing area of tendon and bone.</p
Emergence of contact injuries in invasion team sports : an ecological dynamics rationale
The incidence of contact injuries in team sports is considerable, and injury mechanisms need to be comprehensively understood to facilitate the adoption of preventive measures. In Association Football, evidence shows that the highest prevalence of contact injuries emerges in one-on-one interactions. However, previous studies have tended to operationally report injury mechanisms in isolation, failing to provide a theoretical rationale to explain how injuries might emerge from interactions between opposing players. In this position paper, we propose an ecological dynamics framework to enhance current understanding of behavioural processes leading to contact injuries in team sports. Based on previous research highlighting the dynamics of performer–environment interactions, contact injuries are proposed to emerge from symmetry-breaking processes during on-field interpersonal interactions among competing players and the ball. Central to this approach is consideration of candidate control parameters that may provide insights on the information sources used by players to reduce risk of contact injuries during performance. Clinically, an ecological dynamics analysis could allow sport practitioners to design training sessions based on selected parameter threshold values as primary and/or secondary preventing measures during training and rehabilitation sessions
A New Direction to Athletic Performance: Understanding the Acute and Longitudinal Responses to Backward Running
Backward running (BR) is a form of locomotion that occurs in short bursts during many overground field and court sports. It has also traditionally been used in clinical settings as a method to rehabilitate lower body injuries. Comparisons between BR and forward running (FR) have led to the discovery that both may be generated by the same neural circuitry. Comparisons of the acute responses to FR reveal that BR is characterised by a smaller ratio of braking to propulsive forces, increased step frequency, decreased step length, increased muscle activity and reliance on isometric and concentric muscle actions. These biomechanical differences have been critical in informing recent scientific explorations which have discovered that BR can be used as a method for reducing injury and improving a variety of physical attributes deemed advantageous to sports performance. This includes improved lower body strength and power, decreased injury prevalence and improvements in change of direction performance following BR training. The current findings from research help improve our understanding of BR biomechanics and provide evidence which supports BR as a useful method to improve athlete performance. However, further acute and longitudinal research is needed to better understand the utility of BR in athletic performance programs
Less Invasive Fixation of Acute Avulsions of the Achilles Tendon: A Technical Note.
Purpose: Nowadays, surgical treatment of acute avulsions of the Achilles tendon represents a hard challenge. There is often the possibility that the calcaneus remains completely uncovered from the tendon, making the reinsertion of its distal stub complex. At the same time, the standard open surgical technique could cause difficult wound healing because of the weak blood supply, the increasing possibility of rupture, and the bacterial contamination. To overcome these risks, less invasive procedures should be considered. Methods: We developed an innovative minimally invasive procedure for fixation of acute avulsions of the Achilles tendon employing an integration of four longitudinal stab incisions and one distal semicircular Cincinnati incision. In this way, the distal Achilles tendon stub and the calcaneal insertion are exhibited. Results: We basted the tendon through percutaneous sutures performed across the four stab incisions with a Mayo needle threaded with Ultrabraid. The procedure is repeated with another loop of Ultrabraid. After having bruised the calcaneus bone insertion of the tendon, two sites for two suture anchors were prepared using a specific hole preparation device for the anchors' footprint. Finally, we placed two suture anchors to reinsert the tendon to the calcaneal insertion. Conclusion: Our new less invasive technique is a promising alternative optional procedure for the Achilles tendon (AT) avulsion repair allowing clear exposure of the Achilles tendon insertion, maintaining the longitudinal wholeness of the dermis, and minimizing possible associated complications
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Treatment of an osteoporotic vertebral compression fracture with the StaXx FX system resulting in intrathoracic wafers: a serious complication
Effect of Fe3+ Doping in the Photocatalytic Properties of BaSnO3 Perovskite
CT-INFRA/FINEP/MCTICCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)In the last ten years, stannates with perovskite structure have been tested as photocatalysts. In spite of the ability of perovskite materials to accommodate different cations in its structure, evaluation of doped stannates is not a common task in the photocatalysis area. In this work, Fe3+ doped BaSnO3 was synthesized by the modified Pechini method, with calcination between 300 and 800 degrees C/4 h. The powder precursor was characterized by thermogravimetry after partial elimination of carbon. Characterization after the second calcination step was done by X-ray diffraction, Raman spectroscopy and UV-visible spectroscopy. Materials were tested in the photocatalytic discoloration of the Remazol Golden Yellow azo dye under UVC irradiation. Higher photocatalytic efficiency was observed under acid media. As no meaningful adsorption was observed at this condition we believe that an indirect mechanism prevails. Fe3+ doping decreased the band gap and favored the photocatalytic reaction, which may be assigned to the formation of intermediate levels inside the band gap
Guided tissue regeneration with heterologous materials in primary subtalar arthrodesis: a case report
Matrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions
- …
