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Key Points 1 

1. The acute effects of backward running display unique cardiorespiratory and biomechanical 2 

responses compared to forward running. While running backward appears to be demanding on 3 

the cardiorespiratory system and require high total activation of lower limb muscles it has been 4 

shown to display less mechanical strain on the knee joint when compared to forward running 5 

2. Research suggests that implementing backward running into longitudinal athletic training 6 

programs is associated with decreased injury prevalence, increased lower limb strength, and 7 

improved change of direction performance 8 

3. Though the acute and longitudinal benefits of backward running are many, it is currently 9 

under-represented in scientific literature when compared to other forms of locomotion 10 

 11 

Abstract 12 

Backward running (BR) is a form of locomotion which occurs in short bursts during many 13 

overground field and court sports. It has also traditionally been used in clinical settings as a 14 

method to rehabilitate lower body injuries. Comparisons between BR and forward running 15 

(FR) have led to the discovery that both may be generated by the same neural circuitry. 16 

Comparisons of the acute responses to FR reveal that BR is characterised by a smaller ratio of 17 

braking to propulsive forces, increased step frequency, decreased step length, increased muscle 18 

activity, and reliance on isometric and concentric muscle actions. These biomechanical 19 

differences have been critical in informing recent scientific explorations which have discovered 20 

that BR can be used as a method for reducing injury and improving a variety of physical 21 

attributes deemed advantageous to sports performance. This includes, improved lower body 22 

strength and power, decreased injury prevalence, and improvements in change of direction 23 

performance following BR training. The current findings from research help improve our 24 

understanding of BR biomechanics and provide evidence which supports BR as a useful 25 



 4 

method to improve athlete performance. However, further acute and longitudinal research is 1 

needed to better understand the utility of BR in athletic performance programs. 2 

 3 

1 Introduction 4 

It is understood that forward running (FR) is a propulsive form of locomotion characteristic of 5 

most overground sports. Running in humans is a method of terrestrial locomotion which can 6 

refer to a variety of speeds ranging from jogging to sprinting. Running is unique to other forms 7 

of terrestrial locomotion i.e. walking or skipping, as it is characterized by a single leg 8 

supporting the body for the duration of foot-ground contact and periods of time when both feet 9 

are in the air [1]. Superior FR speed is considered an important component of success in most 10 

overground sports [2-4]. Therefore, it is no surprise then that FR has received much attention 11 

from both scientific and coaching communities. Research on FR ranges from acute 12 

deterministic biomechanical studies [5-10] to assessments of longitudinal training studies [11-13 

14]. Descriptive research on acute variables that characterise superior forward distance running 14 

and sprint-running performances have helped inform training methodology designed to 15 

improve running velocity and running economy [15-18]. For example, specific and non-16 

specific training methods have been developed to enhance force production, power output, and 17 

movement velocity, which are known biomechanical determinants of FR performance in both 18 

youth and adult populations [19-21]. However, while FR has received most of the attention, 19 

other directions of locomotion, such as backward running (BR), have been less well researched.  20 

 21 

In the absence of any formal definition of BR in the literature, BR in the context of this paper 22 

is defined as any form of locomotion in a reverse direction where movement is accomplished 23 

via a single leg of support throughout foot-ground contact and both feet simultaneously in the 24 

air between contralateral foot strikes. BR, like FR, occurs for short periods of time during many 25 



 5 

overground sports [22].  A fundamental difference between BR and FR is the visual perspective 1 

of the runner. During BR, an athlete must rely on alternative sensory information due to a lack 2 

of visual guidance experienced during FR [23, 24].  BR and derivatives, such as backpedaling, 3 

are basic movement patterns utilized for agility actions in sports [25]. BR provides athletes 4 

with a strategy to move in a desired direction and maintain a view of the ball or opposition 5 

[26], while reducing strain on the knee joint [27-29]. It has also been recommended for use in 6 

sports training programs to increase variability [30], prepare athletes for the demands of 7 

competition [31, 32], reduce injury rates [33-35] and enhance performance [30, 36-40].  8 

 9 

Although BR may alter the normal visual orientation relative to FR, it is a strategy used by 10 

athletes of all levels. For example, elite soccer players spend approximately 3-4% of the match 11 

running backward [22]. This is interesting when you consider that the same elite soccer players 12 

only spend between 0.9 and 1.4% of the match sprinting forward. In addition, top-class soccer 13 

players (ranked 1-10 on the official FIFA list) spend significantly more time (p < 0.05) running 14 

backward than moderately ranked soccer players (ranked higher than 20 on the official FIFA 15 

list) [22]. This suggests that BR can be employed as a useful strategy among high performing 16 

soccer athletes.  17 

 18 

Human locomotion is produced via central pattern generators i.e. an intraspinal network of 19 

neurons capable of generating a rhythmic output [41]. It is generally accepted that forward and 20 

backward walking are products of the same central pattern generators [23], although some 21 

contention exists about which pathways are responsible for producing each direction of 22 

locomotion [23, 42]. While limited evidence exists for whether this phenomenon extends to 23 

BR and FR [24], researchers have suggested that training adaptations from BR may transfer to 24 

FR [23]. Although a shared neural circuitry might produce each running direction, BR 25 



 6 

velocities are known to be slower than FR velocities during maximal efforts [26, 43]. In fact, 1 

maximal velocities which can be achieved during BR are approximately 70% of those which 2 

can be produced during FR [26, 43].  3 

 4 

Although velocities achieved during BR are lower than those observed during FR, BR is found 5 

in warm-up programs designed to reduce injury prevalence and improve athletic performance 6 

[32-35, 40]. The rationale for the inclusion of BR in the warm-up has not been documented to 7 

the knowledge of these authors, however, it may be due to BR’s ability to demonstrate lower 8 

biomechanical strain on the knee joint than FR [27-29, 44] while also requiring higher 9 

activation in the leg muscles [36] or simply to warm up the muscles specific to the movement 10 

patterns encountered in the sport. 11 

 12 

Currently, BR is a movement utilized as an injury prevention method and injury rehabilitation 13 

technique [45-48], yet little is known about the athletic benefits of BR. Therefore, the purposes 14 

of this review are to (i) explore and compare the acute responses of BR to FR; (ii) examine the 15 

effects of BR training on aspects of athletic performance; (iii) discuss the possible merits of 16 

BR as a method to improve athletic performance; and (iv) provide future research 17 

recommendations into BR. 18 

 19 

2 Search Strategy for Acute and Training Studies 20 

From December 2016 to September 2017 a comprehensive search of seven electronic databases 21 

(MEDLINE [EBSCO], OVID, PubMed, ScienceDirect, SPORTDiscus, Web of Science and 22 

Google Scholar) was performed. The same databases were searched in January 2018 to identify 23 

more recent articles of relevance. The following keywords were used: ‘backward’, ‘retro’ 24 

‘running’, ‘backpedal’.    25 



 7 

 1 

2.1 Selection Method and Criteria  2 

Results were limited to human studies, academic journals, reviews, and dissertations. The 3 

bibliographies of all reviewed articles were hand searched and forward citation was used where 4 

applicable. All studies conducted on BR which were published in the English language were 5 

included. The study selection process involved removing duplicates, screening for relevance 6 

on title and then abstract and finally screening the full-text articles using the 7 

inclusion/exclusion criteria.  8 

 9 

3 Acute Responses to Backward Running versus Forward Running 10 

An acute response can refer to a range of biomechanical or physiological effects either during 11 

or immediately following a stimulus. To realise the potential long term training effects of an 12 

exercise, it is important to understand the immediate overt and underlying outcomes associated 13 

with that movement. Running research has typically aimed to identify the influence of speed 14 

[49-52] and resistance [21, 53] on acute responses, while generally overlooking the effect of 15 

running direction on these deterministic variables. Herein, acute energetic and biomechanical 16 

comparisons are drawn between FR and BR. Figure 1 provides a visual comparison between 17 

BR and FR over the stance phase of the gait cycle.   18 

 19 

PLEASE INSERT Figure 1. Stance phase of backward and forward running about here. 20 

 21 

3.1 Energetics and cardiopulmonary responses 22 

 The energetic cost of running overground is determined by the volume of active muscle 23 

necessary to propel an athlete in their desired direction [54], the ability of muscle tendon units 24 

to store and utilize mechanical energy [55], and the rate at which force can be applied during 25 



 8 

foot-ground contact [54, 56]. It is important to consider these factors when comparing how 1 

much energy is required during FR compared to BR.  2 

 3 

It has been reported that BR places greater metabolic demands on the body than FR at relative 4 

and absolute velocities [54, 57, 58]. Variables assessing energetic and cardiopulmonary 5 

responses include indirect calorimetry [59], oxygen consumption, heart rate, and blood lactate 6 

concentrates [54, 57, 58]. Measurements of indirect calorimetry revealed that BR elicits 28% 7 

higher metabolic cost compared to FR at 2.24 ms-1 [59]. Oxygen consumption, heart rate and 8 

blood lactate have also been reported to be significantly higher during BR than FR at 2.68 ms-9 

1 [57, 58]. This suggests that BR elicits a greater energetic demand and cardiopulmonary 10 

response than FR at a given speed.  11 

 12 

Wright and Weyand [54] concluded that greater energetic demands exhibited during BR were 13 

a result of a 14% increase in average muscle force per unit of ground force exerted during BR 14 

versus FR. This resulted in 10% more muscle volume being activated to produce each unit of 15 

ground force during BR compared to FR. These findings are reported at relatively slow running 16 

speeds between 1.75 - 3.5 ms-1. Currently it is unknown whether comparisons of BR and FR at 17 

running speeds greater than 3.5 ms-1 will result in similar reports of greater muscle volume 18 

being activated during BR.  19 

 20 

Another suggestion for why BR requires greater energetic demands is that it is less reliant on 21 

the stretch-shortening cycle [60, 61]. Cavagna et al. [60] concluded that BR relies less on 22 

eccentric work and more on concentric work because the muscle-tendon units are stretched 23 

more slowly during the braking phase at the beginning of foot-ground contact and shorten more 24 

rapidly during the push at the end of foot-ground contact compared to FR at similar absolute 25 
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velocities.  Accordingly, BR appears to be more reliant on the contractile components of the 1 

motor unit, which are known to require greater energy expenditure [62, 63]. Therefore, BR is 2 

characterised by greater metabolic energy expenditure when muscles are exerting greater 3 

forces during concentric contractions and lower forces during eccentric contractions.  4 

 5 

The time available for developing force is important for determining the energetic cost of a 6 

movement [64]. A simple inverse relationship exists between the rate of energy used for 7 

running and the time a foot applies force to the ground during each stride [55]. Wright and 8 

Weyand [54] concluded that the application of ground force during both BR and FR explains 9 

the energetic cost regardless of direction. Furthermore, they concluded that the rate at which 10 

force can be applied during foot-ground contact is higher during BR than FR [54]. This finding 11 

has relevance to sporting applications because we know that rate of force development seems 12 

to be primarily determined by the capacity of motor units to produce maximal activation in the 13 

early phase of explosive contractions (first 50-75 ms) [65].  14 

 15 

3.2 Kinematics 16 

Running kinematics are biomechanical variables which describe motion of the body (e.g., 17 

angles, velocities and positions), without reference to the underlying forces that cause the 18 

motion [66]. Detailing kinematics during running is useful as the information provides overt 19 

visual and quantifiable descriptions of movement. Typical kinematic measures of running 20 

include joint kinematics (e.g., location and orientation of body segments) and step kinematics 21 

(i.e.  contact time, flight time, stride length and stride frequency). Empirical research pertaining 22 

to kinematic characteristics of FR and sprinting, and the influence of training on these 23 

variables, is plentiful (for review, readers are referred to the articles of: Mero et al. [10, 67], 24 
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Novacheck [68]). Unfortunately, relatively little information is available on the kinematics of 1 

BR.  2 

 3 

3.2.1 Joint kinematics. It appears that BR displays distinct differences (see Figure 2) in the 4 

displacement of the lower limbs compared to FR [26, 29, 69]. Differences can be attributable 5 

to the reversal of movement direction and the location and magnitude of joint displacements 6 

over a stride cycle [29, 69].  7 

 8 

PLEASE INSERT Fig 2. Joint kinematics of backward running in relation to forward running 9 

[26, 29, 69]. The differences shown are relative to forward running. about here 10 

ROM = range of motion 11 

BR = backward running 12 

FR = forward running 13 

 14 

3.2.1.1 Ankle range of motion. From the time a runner leaves the ground until mid-way through 15 

the flight phase of their stride, ankle kinematics display similar ranges of motion (ROM) for 16 

both FR and BR [69]. However, differences appear moments before ground contact of the foot, 17 

characterised by a dorsiflexed position during FR and a second plantarflexion phase during BR 18 

[69]. Mean ankle range of motion over a stride cycle has been reported to be 52 - 55◦ and 42 - 19 

47◦ during FR and BR, respectively [26, 69]. One possible explanation could be that the ankle 20 

is anatomically designed to produce forward propulsion [70]. The foot is therefore functionally 21 

constrained in BR due to the angle of the ankle increasing, as opposed to decreasing before 22 

foot-ground contact in FR, limiting the overall ROM and propulsive potential of the joint [26].  23 

 24 



 11 

3.2.1.2 Knee range of motion. Knee ROM over the gait cycle has been reported to be greater 1 

during both the flight phase and stance phase of FR compared to BR at similar absolute and 2 

relative running speeds [29, 69, 71]. BR is characterized by greater knee flexion during initial 3 

foot-ground contact and greater knee extension during late foot-ground contact compared to 4 

FR [69]. Between early and late foot-ground contact the knee undergoes less flexion during 5 

BR than is experienced during FR [69]. These findings indicate that the knee is less compliant 6 

during BR compared to FR at similar absolute intensities. A discovery from Cavagna et al. [61] 7 

that BR displays greater vertical leg stiffness compared to running at similar speeds forward 8 

supports this suggestion. Although it is unknown whether these characteristics are true when 9 

comparing BR and FR at similar relative intensities, several potential training adaptations could 10 

result from decreased knee ROM and increased vertical leg stiffness exhibited during BR. For 11 

example, increases in vertical leg stiffness may translate to greater utilization of the stretch-12 

shortening cycle [72] and reduce deformation of the lower extremities during FR and high 13 

velocity movements such as sprint-running and change of direction tasks [52]. However, this 14 

posit has yet to be empirically tested.  15 

 16 

3.2.1.3 Hip range of motion. Mean ROM between 27 - 42◦ and 40 - 69◦ have been observed at 17 

the hip for BR and FR, respectively [26, 69]. Increasing running velocity results in concomitant 18 

increases in hip joint displacement for both FR and BR [26]. Maximal hip flexion is rarely 19 

achieved during either FR or BR, yet maximal hip extension is only seen during FR [69]. The 20 

lower ROM displayed during BR versus FR might be a result of anterior musculotendinous 21 

structures of the hip, knee and abdomen preventing overstretching during the flight phase of 22 

the stride cycle [73]. This postulate seems logical, yet is currently untested.  23 

 24 
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3.2.2 Step kinematics. Joint kinematics are known to be related to step kinematics during 1 

running [74]. For instance, as running velocity increases joint ranges of motion become greater, 2 

which leads to concomitant changes in step kinematics i.e. longer stride length [50, 75]. Step 3 

characteristics are variables that have been used by coaches and sports scientists to assess 4 

running performance for decades [18, 68]. For example, optimal stride length has been 5 

recommended for submaximal and maximal phases of FR [6, 76, 77] and increases in stride 6 

frequency are thought to determine maximal sprint running performance [78, 79]. To gain 7 

insights into the relationship between running direction and step kinematics researchers have 8 

analysed running performances at velocities ranging from 1.85 - 6.42 ms-1 and 2.64 - 9.10 ms-9 

1 for BR and FR, respectively [26, 36, 38, 59, 69].  10 

 11 

Running velocity is considered a result of the interaction between stride length and stride 12 

frequency [18], with greater speeds achieved through large ground reaction forces produced 13 

during short ground contact times [43]. It has been reported that the distance between each 14 

ipsilateral foot-ground contact i.e. stride length, is significantly less during BR than FR [54], 15 

where matched absolute speeds have been reported to be 12% less [58, 69] and relative speeds 16 

37% shorter [26, 43]. Alternatively, stride frequency has been determined to be significantly 17 

higher for BR than FR [54], with matched absolute speeds being 12% faster [58, 69] and 18 

relative speeds showing 11% higher turnover  [26, 43, 80]. In BR, contact times have been 19 

found to be 19% longer at self-selected speeds [29], 9% shorter at matched absolute speeds 20 

[38] and 5% greater at relative speeds [43] compared to FR. Flight times, i.e. time which neither 21 

foot is in contact with the ground, have been shown to be lower for BR than FR by 9% and 22 

25% when compared at matched absolute and relative running speeds, respectively [38, 43]. 23 

These findings indicate that BR is characterized by increased contact times and decreased flight 24 

times which manifest as shorter stride lengths and higher stride frequencies across a range of 25 
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speeds. Stride length and flight times appear to be influenced to a greater percentage when 1 

matched at relative running speed. This may be due to greater FR velocities being achieved, as 2 

we have seen that BR is on average 30% slower than FR [26, 43].  FR appears to display 3 

advantageous step kinematics for producing higher running speeds than BR, although it is 4 

difficult to decipher the underlying determinants due to limited published studies in this area.   5 

 6 

3.3 Function and activation of leg muscles during forward and backward running 7 

As running speed increases, the need for greater forces to produce longer stride length and 8 

higher stride frequency appears to be controlled by increases in leg muscle activity [81]. The 9 

activation of leg muscles during human locomotion is the result of learned programming 10 

patterns generated via the central nervous system  [82]. The same neurological system 11 

stimulated by afferent muscle, joint and associated tissues is believed to produce both backward 12 

and forward locomotion [23, 83-85] and has been suggested to extend to BR and FR [24]. This 13 

revelation has led to researchers investigating how the function and activation of 14 

musculotendinous structures of the lower limbs change with running direction [36, 38].  15 

 16 

3.3.1 Muscle function. The mechanical function of leg muscles is considered to have developed 17 

in humans to propel us forward [86, 87]. The quadriceps and tibialis anterior primarily serve 18 

to attenuate eccentric braking force during early foot-ground contact while the plantar flexors, 19 

hamstrings and gluteal muscles assist in forward propulsion [49]. The functional roles of lower 20 

limb muscles are interchanged between BR and FR, whereby the anterior muscles of the legs 21 

become the primary source of propulsion and posterior muscles absorb braking forces during 22 

BR [69]. The findings of Flynn and Soutas-Little [36] support this notion with their discovery 23 

that the muscle firing patterns are unique to running direction. Specifically, BR velocity is 24 

achieved by large productions of activity during the shortening action of the quadriceps and 25 
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posterior lower leg muscles. The pragmatic utility of this knowledge provides a method for 1 

reducing eccentric strain on desired musculotendinous structures of the leg, while potentially 2 

developing greater concentric contractile adaptations.  3 

 4 

3.3.2 Muscle activation. If faster running velocities are related to increased muscle activity 5 

[81], FR could be expected to be characterised by greater activity than BR. However, the reality 6 

is that most lower limb muscles display greater total activation over an entire stride cycle during 7 

BR compared to FR [36, 80]. The greatest differences are present in the leg extensor/hip flexor 8 

muscles with a range between 53.3% and 189.6% greater activity over the stride cycle reported 9 

during BR compared to FR at the same absolute speed [80]. These findings are important 10 

because they are the driving force for some clinicians and researchers claiming that BR can be 11 

used to increase leg strength and power [38, 88] and restore muscle balance [36]. In addition 12 

to greater muscle activation, the average muscle force per unit ground force has been shown to 13 

be substantially higher (14%) for BR than FR [54]. The researchers suggested that this was a 14 

result of larger muscle forces at the ankle presenting during BR, which may manifest due to 15 

the average active muscle length being 4% shorter during BR than FR. This suggestion seems 16 

plausible as muscles of the lower leg have reported higher activation when length is decreased 17 

[89]. Practically, even at matched absolute speeds this means that the muscle spent 4% more 18 

time in a concentrically contracted state over the stride cycle when the subject ran backward.   19 

 20 

3.4 Kinetics 21 

Kinetic variables (i.e. vertical and horizontal forces) have been shown to be important measures 22 

to determine running performance [10, 50, 77, 90]. The ability to generate large forces in short 23 

periods of time characterizes fast running speeds [43, 90]. It is important to therefore quantify 24 

and compare how forces are expressed during BR and FR to understand the similarities and 25 
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differences between running directions.  Figure 3 illustrates some key kinetics associated with 1 

BR compared to FR.  2 

 3 

3.4.1 Patellofemoral joint compressive forces. BR has been suggested for clinical purposes 4 

because it has been proposed to reduce the mechanical stress on the knee compared to FR at 5 

matched absolute submaximal speeds [27-29]. Using mathematical models, researchers have 6 

calculated that the compression of the patella against the femur i.e. patellofemoral joint 7 

compressive force (PFJCF) is on average 24% lower during BR than FR at relative and absolute 8 

running speeds [27-29]. The general consensus is that PFJCF is primarily influenced by knee 9 

extensor moments, which have been reported to be, on average, 72% higher in FR than BR 10 

[27-29]. Knee moments are influenced by both the magnitude and location of the ground 11 

reaction force relative to the foot [28]. Therefore, it is necessary to understand how and where 12 

forces are expressed during FR and BR to conceptualize the clinical and performance 13 

implications of each running direction.  14 

 15 

3.4.2 Magnitude and location of ground reaction forces. Whilst PFJCF is expressed to a lower 16 

degree in BR, the magnitude and orientation of the ground reaction force have been reported 17 

to be similar during both BR and FR [28, 38]. These magnitudes at relatively low running 18 

speeds have been reported to be between 1.6 to 2.5 times body weight for BR and 2.5 to 2.7 19 

times body weight for FR, respectively [38, 91]. Weyand et al. [43] found that peak vertical 20 

ground reaction forces during BR and FR were 2.1 and 3.6 times body weight at maximal 21 

running speeds, respectively. The FR ground reaction forces found by Weyand and colleagues 22 

[43] are in agreement with other researchers who have determined that a sprinter exerts forces 23 

in excess of 3 to 4 times their body weight during FR [10, 92]. Weyand et al. [43] explained 24 

that a possible reasoning for their finding was that running speeds at which the forces were 25 
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obtained were 6.42 and 9.10 ms-1 for BR and FR, respectively. In addition to the magnitude of 1 

force, knowing the location of force relative to the foot is useful for determining how the forces 2 

will act upon the body. 3 

 4 

Although ground reaction force is distributed across the entire body, the foot is the only point 5 

of contact with the ground during running where forces are both attenuated and generated via 6 

the musculoskeletal system [93]. The location of ground reaction force has been identified to 7 

be further forward on the foot at initial ground contact in BR versus FR [28]. With the 8 

functional role of the knee and ankle muscles switching between BR and FR, the implications 9 

are that ground reaction forces may be attenuated more by the ankle and foot complex, resulting 10 

in a decreased moment arm between the ground reaction force vector and the knee joint in BR. 11 

This knowledge adds to our understanding of the magnitude and location of the peak force 12 

experienced during running, yet provides little information outside of a snapshot in time. 13 

Including information about how forces are expressed before and after peak ground reaction 14 

force is experienced may enhance our understanding of how FR and BR are generated.   15 

 16 

3.4.3 Braking and propulsive forces. Kinetic variables such as breaking and propulsive force 17 

expression and the rate at which force can be developed may serve strength and speed coaches 18 

with useful information when performance enhancement is the objective. Ground reaction 19 

forces during running change from being negative during early foot-ground contact (i.e. 20 

braking) to being positive during late foot-ground contact (i.e., propulsion) [60, 66]. Measuring 21 

the duration and magnitude of braking and propulsive forces provides insights into the demands 22 

of muscle components [94, 95].  23 

 24 



 17 

Running at a constant speed, the momentum lost during braking must equal the momentum 1 

gained during propulsion [96]. The time the body undergoes braking forces has been shown to 2 

be shorter  in BR compared to FR at constant speeds [60]. Alternatively, the time generating 3 

propulsive forces has been found to be longer during BR than FR [60]. The differences in time 4 

during braking and propulsion between BR and FR indicate that the mean force experienced 5 

while braking is greater in FR, while the mean force necessary for propulsion is greater during 6 

BR [61].  7 

 8 

Expanding on the expression of force between BR and FR, Cavagna and colleagues [60, 61] 9 

discovered that the propulsive power during BR is, on average, greater than the braking power. 10 

Ultimately, the difference between backward and FR is due to a significant increase of the 11 

average propulsive power with a non-significant change in average braking power. This 12 

information suggests that compared to FR, BR may be less efficient at transferring eccentric 13 

energy to concentric energy via the stretch shortening cycle [60, 61], therefore indicating that 14 

FR is more reliant on the elastic components of the motor unit, while BR relies more heavily 15 

on the contractile component. If increasing contractile potential of lower limb motor-units is 16 

an objective, then BR may be a method to enhance these qualities.  17 

 18 

3.4.4 Rate of force development. The speed in which the contractile elements of the muscle can 19 

develop force i.e. rate of force development [97], is an important determinant of explosive 20 

potential across a range of physical performance tasks differing in stretch-shortening cycle 21 

durations for both youth and adults [98-101].  Rate of force development during BR has been 22 

shown to be approximately 22% greater than FR across speeds ranging from 1.75 m/s to 3.5 23 

m/s and was found to increase more rapidly with speed in BR compared to FR, with the greatest 24 

differences being realized at the highest speeds [54]. The translation of these findings in a 25 



 18 

performance context is that BR is less reliant on the parallel and series elastic components of 1 

muscle, and appears to require greater recruitment of the contractile components, particularly 2 

at greater running speeds.  3 

 4 

PLEASE INSERT Fig 3. Kinetics of backward running compared to forward running [27-29, 5 

38, 43, 60, 91]. The differences shown are relative to forward running. about here 6 

GRF = ground reaction force 7 

 8 

3.5 Summary 9 

In summary, it seems BR provides a unique energetic and biomechanics profile compared to 10 

FR (see Figure 4). When comparing the acute responses, BR shows less efficient step 11 

kinematics and stretch-shortening cycle characteristics for producing high running speeds 12 

when compared to FR [26, 29, 43, 60, 61, 69]. However, BR appears to display beneficial 13 

characteristics related to total muscle activation [36, 80], average muscle force per unit ground 14 

force [54], utilization of the contractile element of the motor unit [60, 61], lower knee joint 15 

loads [27-29] and higher rate of force development [54] when compared to FR at matched 16 

absolute and relative speeds. While this information is promising for rehabilitation and 17 

performance purposes, most research has been conducted at relatively slow speeds where BR 18 

and FR were matched at absolute velocities. Knowing that maximal BR speed is approximately 19 

30% slower than maximal FR speed [26, 90], further research is needed to conclude whether 20 

the available findings can be translated to comparisons at higher, relatively matched running 21 

speeds. Furthermore, as external resistance is known to influence biomechanical determinants 22 

during FR [21, 53, 102], the acute effects of adding resistance to BR is unknown.  23 

 24 
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PLEASE INSERT Figure 4. Key characteristics of backward running compared to forward 1 

running at relative and absolute speeds [26-29, 36, 43, 54, 57-59, 61, 69, 80]. The differences 2 

shown are relative to forward running. about here 3 

FR = forward running 4 

 5 

4 Longitudinal Responses to Backward Running Training 6 

4.1 Warm-up programs to reduce injury and enhance performance in athletes 7 

An integral purpose of most sports training programs is to prevent injuries and enhance athletic 8 

performance. Thus, warm-up protocols which include BR have been developed and researched 9 

in adult and youth populations [35, 103]. The most notable programs include the FIFA 11+ 10 

[35, 104], FIFA 11+ Kids [34] performance enhancement and injury prevention [48], 11 

HarmonKnee [45] and Dynamic Warm-Up programs [105].  12 

 13 

From a prevention perspective, these warm-up programs have shown to statistically reduce 14 

lower limb overuse and injury prevalence [106]. Additionally, it seems that these programs can 15 

significantly enhance quadriceps and hamstring strength [103, 105], hamstring flexibility, 16 

[105], sprint performance [31] and dynamic balance [107]. Whilst the authors are aware that 17 

the warm-ups comprise of multiple movements and it is difficult to disentangle the contribution 18 

of each exercise to the researchers’ findings, these results provide support for implementing 19 

warm-up programs that includes BR.  20 

 21 

4.2 Aerobic and anaerobic adaptations of backward running 22 

Two research teams have examined the longitudinal effects of BR on physical and fitness 23 

adaptations [39, 108], although one must be cognizant that neither compared the effects to FR. 24 

Terblanche et al. [39] tested the effects of a BR program on physical and performance 25 



 20 

components of fitness in 26 habitually-trained females. After training BR three times a week 1 

for six-weeks, the training group decreased body fat by 2.4% (p = 0.01), increased predicted 2 

maximal oxygen uptake (VO2max) by 5.2% (p = 0.01), improved FR economy by 30.3% (p = 3 

0.01) and decreased blood lactate concentration after submaximal FR by -17.1% (p = 0.01). 4 

The control group, which were not exposed to a training stimulus, did not show significant 5 

improvements in any of the tests. These findings provide some evidence that chronic BR can 6 

improve both physical and performance components of athletic fitness, however, whether it 7 

has any advantage over FR remains unclear.  8 

 9 

In a group of highly-trained male runners, Ordway and colleagues [108] quantified the effects 10 

of a 5-week BR training program on FR economy. The eight athletes completed two training 11 

sessions a week for 5-weeks, which resulted in significant improvements (2.54%; p = 0.032) 12 

in steady state FR oxygen consumption, i.e. running economy. This finding is of importance 13 

because it is comparable to improvements which have been reported after strength, plyometric, 14 

and altitude training interventions [109-111]. Contrary to the findings of Terblanche et al. [39], 15 

Ordway and colleagues [108] did not find significant changes in VO2max or body composition 16 

following BR training. The lack of improvement in VO2max might be a reflection of the 17 

characteristics of the athletes, who were ranked above the 80th percentile in VO2max at the pre-18 

test. Something to consider is that the post-test results were compared to the post-familiarized 19 

results. While this is good scientific practice, readers must be cognizant that the 5-weeks of 20 

familiarization and 5-weeks of training followed the same overload program, differentiated in 21 

run training intensity by only 0.45 ms-1 and fitness responses may have occurred during the 22 

first 5-weeks of familiarization. The above findings support the hypothesis of previous 23 

researchers that aerobic capacity could be improved from BR training due to the relatively 24 

larger acute energetic costs and cardiopulmonary demands BR places on the body compared 25 
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to FR  [54, 58, 69]. One may argue that increasing the speed of FR to impose higher aerobic 1 

and anaerobic demands would be a more specific form of training, however many field and 2 

court sports are not unidirectional [112, 113] and athletes may benefit from the reduced knee 3 

joint loading [27-29] and increased utilization of shortening muscle actions [54] associated 4 

with BR. However, further research is needed to validate such views.  5 

 6 

4.3 Strength adaptations of backward running 7 

To the authors’ knowledge, only two research teams have published research examining the 8 

changes in maximal force production to BR training [38, 114]. Swati et al. [114] examined the 9 

effects of BR training on maximal voluntary isometric contraction (MVIC) in a group of males 10 

between 18 and 25 years of age. Thirty participants were randomly allocated to either a 11 

backward walking (2.48 ms-1), backward running (3.48 ms-1), or a control group. The subjects 12 

performed their respective exercise three times a week for six weeks. It was found that the BR 13 

group significantly improved MVIC at 60∘knee flexion by 10% in relation to the control group. 14 

These increases in isometric performance might be indicative of the isometric nature of BR, 15 

i.e. heavy reliance on contractile element with smaller range of motion [36]. It should be noted 16 

that this study did not include a FR group, therefore direct comparisons between the 17 

effectiveness of BR versus FR on strength adaptations cannot be made from these findings.  18 

 19 

Threlkeld and colleagues [38] compared the effects of an 8-week BR versus FR training 20 

program on the isokinetic muscular torque production (IMTP) in a group of ten adult runners 21 

(6 males, 4 females). The runners were assigned to either an 8-week FR or BR training group. 22 

The FR group was instructed to continue their normal FR program with no changes, whereas 23 

the BR group gradually included BR into their FR program. Subjects were encouraged to set a 24 

10-12 minute per mile pace (2.24 - 2.68 ms-1) during BR. Improvements in knee extensor IMTP 25 
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were over two times greater in the BR group at 120 degrees per second and over four-fold 1 

larger at 75 degrees per second compared to the FR group. Additionally, the BR group showed 2 

significant improvements in ankle plantarflexor IMTP at 120 degrees per second, which were 3 

nearly ten times greater versus the changes in the FR group. The changes indicate that BR 4 

could be a technique for strengthening the quadriceps and plantarflexor muscles. This study is 5 

beneficial as it is one of the few to include a FR control group and provide direct insights into 6 

the utility of BR training versus FR training. 7 

 8 

4.4 Linear speed and change of direction performance  9 

Swati and colleagues [114] measured the effects of BR training on change of direction speed 10 

in a group of males aged 18-25 years compared to a backward walking and control group.  The 11 

researchers found that BR and backward walking training three times a week for 6-weeks 12 

significantly improved change of direction performance by 3.86% and 2.38%, respectively, yet 13 

no significant changes were found for the control group who were not exposed to any training 14 

intervention (-0.66%). Change of direction performance from pre- to post-testing was found to 15 

be significantly different for the three aforementioned conditions, with the greatest difference 16 

between the BR group and control group (p = 0.01). This research highlights the ability of a 6-17 

week BR training program to improve change of direction performance in a group of male 18 

university aged subjects. However, this study did not compare the training effects of BR to FR.  19 

 20 

One study compared the effects of BR training versus FR training on linear sprint-running and 21 

change of direction performance in seventeen highly-trained female athletes [30]. The BR and 22 

FR groups followed the same training programme biweekly for six weeks. The running was 23 

performed at maximum intensity with work-to-rest ratios between 1:5 and 1:3. Linear sprint-24 

running performance did not differ from pre-training to post-training for the BR group, 25 



 23 

although the FR group showed declines in performance over 20 m, with significant (p < 0.05) 1 

decreases of 6.46% and 4.54% over 5 and 10 m, respectively. Change of direction performance 2 

for the BR group showed significant improvements for all change of direction tasks, ranging 3 

from 2.99% for the 505-agility test to 10.33% in a ladder test.  The improvements in the BR 4 

group were also found to be significantly greater than the FR group, which showed a range of 5 

improvements from 0.38% in the 505-agility test to 2.87% in the ladder test. These findings 6 

suggest that BR training may be used to improve change of direction performance and maintain 7 

linear forward sprint-running performance.  8 

 9 

4.5 Summary 10 

The longitudinal adaptations to BR training appear to be beneficial for improving aerobic and 11 

anaerobic performance, isometric and concentric leg strength, and change of direction 12 

performance. These adaptations offer valuable insights into the possible applications of BR 13 

training in sports training programs.  14 

 15 

Studies that have quantified the effects of BR on physical and physiological adaptations are 16 

few and typically carry a number of limitations e.g.  lack of FR versus BR and/or lack of a 17 

training control group. From a practical perspective, this means that coaches and athletes 18 

wishing to use BR training do not have support for how to prescribe intensity or load to 19 

systematically overload training for their desired adaptations. It is unknown whether BR 20 

training is the panacea for injury prevention or performance enhancement. However, if BR is 21 

empirically investigated using robust methodological approaches, researchers and coaches may 22 

better understand the utility of implementing BR into a sports training program.  23 

 24 

5 Practical Application 25 



 24 

Repetitive stress on musculoskeletal structures may lead to overuse injuries. Therefore, BR 1 

may be a method to increase training variability and reduce injury prevalence. From a 2 

performance perspective, exercises such as the start and acceleration phases during sprint 3 

running are known to require large isometric and concentric muscular forces. It may be 4 

hypothesised that BR could be used as a method to train such movements based on the 5 

knowledge that BR requires greater isometric and concentric demands of the musculotendinous 6 

structures of the legs to propel the body than constant speed FR at relative speeds. Furthermore, 7 

reductions in total lower limb ROM expressed during BR would allow the foot to be 8 

repositioned more rapidly and increase stride frequency. Higher stride frequency displayed 9 

during BR might help improve the neurophysiological functions of the body to increase 10 

maximal FR performance.  This is further supported by the fact that greater vertical leg stiffness 11 

is associated with BR compared to FR. High vertical leg stiffness is known to be concomitant 12 

with greater maximal forward sprinting speed.  13 

 14 

6 Conclusion and Research Suggestions  15 

It appears that BR exhibits a unique energetic and biomechanical profile compared to FR. 16 

Whilst running speed may be limited by musculoskeletal function during BR, researchers have 17 

reported that the acute responses may be beneficial from both clinical and performance 18 

perspectives compared to FR. Energetics and biomechanics encompass a large portion of 19 

variables important for understanding the demands of a movement, yet only a small number of 20 

scientific investigations have researched these determinants in BR.  21 

 22 

Empirical support exists for implementing warm-up programs which include BR into sports 23 

training programs to both fortify athletes against injury and improve performance. Additional 24 

evidence suggests that BR might be a training strategy to improve cardiovascular and 25 
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neurophysiological functions necessary for optimizing athletic performance. Whilst 1 

empirically supported reports are encouraging, longitudinal research on the training effects of 2 

BR is scarce. Currently, the training studies conducted on BR have been un-resisted, therefore 3 

it is unknown how prolonged loading of BR may affect athletic performance. Additionally, 4 

most of these training studies are not designed to analyse the effects on trained athletes. 5 

Furthermore, none have analysed the effects on paediatric populations. Without knowledge in 6 

these areas, a dearth of scientific insight exists pertaining to BR training.  7 

 8 

The biomechanics of BR are relatively well understood at slow running speeds, nevertheless 9 

little is known about how these determinants change with relation to running velocity or with 10 

various types of external resistance. Given this information, it is suggested that more empirical 11 

research should be conducted in this area. The findings of these investigations may allow for a 12 

more complete understanding of how BR may be implemented into sports training programs 13 

to achieve a desired training effect.  14 

 15 

Until now, sports scientists have shown relatively little interest in developing BR training 16 

strategies that could improve athletic performance. The lack of research in this area means that 17 

coaches must make decisions concerning sport performance training without the support of 18 

empirical data. It is our recommendation that future research investigate the influence of speed 19 

and resistance on the acute and chronic effects of BR and FR. Additionally, we recommend 20 

that explorations be conducted in both youth and adult populations to understand whether BR 21 

is influenced by either maturation or training history. 22 

 23 
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