68 research outputs found

    Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan

    Get PDF
    AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Measurement of power and energy consumption of a competition-mobile-robot

    No full text
    Power and energy consumption are the two most important factors for successful operation; they also play important roles in performance identification. The measurement of power and energy consumption is a common test in the development process of a competition mobile robot. If the power of a competition mobile robot is not sufficient, the running time in the competition will be too long and winning the competition will not be possible. Thus, the power and energy consumption are basic and important measurement parameters for a competition mobile robot. In this paper, five types of hand-made competition mobile robots are successfully developed and their performances are measured. From the measurements, their powers and energy consumptions are evaluated and analyzed, respectively. The test results show large differences in the powers and energy consumptions of the five models, even though the same motors were used. The design and construction of the competition mobile robot are the key parameters that cause these huge differences. It is possible to develop the measurement techniques for power and energy consumption, quickly and precisely, to determine how to modify a competition mobile robot rapidly and efficiently to a condition optimal for a mobile robot competition

    Effects of acute aerobic exercise on response preparation in a Go/No Go Task in children with ADHD: An ERP study

    Get PDF
    Purpose: The purpose of this study was to investigate the impact of acute exercise on reaction time and response preparation during a Go/No Go Task in children with attention deficit hyperactivity disorder (ADHD). Methods: Nineteen children with ADHD (aged between 8 and 12 years old) undertook a 30-min intervention that consisted of treadmill running or video-watching presented in a counterbalanced order on different days. A Go/No Go Task was administrated after exercise or video-watching. Results: The results indicated a shorter reaction time and smaller contingent negative variation (CNV) 2 amplitude following exercise relative to the video-watching. For event related potential (ERP) analyses, greater CNV 1 and CNV 2 amplitudes in response to No Go stimuli in comparison to Go stimuli was observed in the video-watching session only. Conclusion: These findings suggest that acute exercise may benefit children with ADHD by developing appropriate response preparation, particularly in maintaining a stable motor preparatory set prior to performing the given task

    Implementation and outcomes of hospital-wide computerized antimicrobial approval system and on-the-spot education in a traumatic intensive care unit in Taiwan

    No full text
    Background/purpose: Inappropriate prescribing of antibiotics is a major health-care problem in intensive care units (ICUs). This study evaluates the impact of a direct hospital-wide computerized antimicrobial approval system (HCAAS) and on-the-spot education for practitioners in a neurosurgical ICU in Taiwan. Methods: We retrospectively analyzed the medical records monthly of patients who were admitted to the neurosurgical ICU during a period of 7 years and 7 months. A pretest-post-test time series analysis, comparing the three periods: period I (no infectious disease (ID) physician), period II (part-time ID physicians), and period III (full-time ID physician). Antimicrobial consumption and expenditure, incidence of hospital-associated infections, prevalence of healthcare-associated bacterial isolates, in-hospital mortality rates, and indication of antibiotics usage were analyzed. Results: Full-time ID physician can increase the consumption of narrow-spectrum antimicrobials (cefazolin, and cefuroxime), and decrease the consumptions of broad-spectrum antimicrobials (ceftazidime, cefepime, and vancomycin) compared to part-time ID physicians. From period I to period III, the expenditure of antimicrobials, incidence of hospital-associated pneumonia, and the in-hospital mortality rates (crude, sepsis-related, and overall infection-related mortality) decreased statistically. The prevalence of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae, and Carbapenems-resistant Pseudomonas aeruginosa remained at low level after HCAAS implementation. From 2007 to 2009, the rational antibiotics usage continued to increase, resulting from to more prophylaxis and appropriate microbiologic proof, but less empiric antimicrobial therapy. Conclusion: Implementation of HCAAS and long-term on-the-spot education by full-time ID physician can reduce antimicrobial consumption, cost, and improve inappropriate antibiotic usage whilst not compromising healthcare quality. Keywords: ICU, Hospital-wide computerized antimicrobial approval system, Hospital-associated infections, On-the-spot educatio

    Estimation of the Surface Dose in Breast Irradiation by the Beam Incident Angle and the 1 cm Depth Dose

    No full text
    To develop a method of estimating surface dose in whole breast irradiation, we used an anthropomorphic phantom with accessories for the simulation of different breast sizes. The surface points, which are measured by TLDs, are set along with two main directions, superior-inferior and medial-lateral. The incident angle between the photon beam and the surface and the doses at 1 cm beneath the surface at every point are assessed by a computerized treatment planning system (cTPS). With the prescription dose of 200 cGy, the average surface doses under tangential irradiation are 97.73 (±14.96) cGy, 99.90 (±10.73) cGy, and 105.26 (±9.21) cGy for large, medium, and small breast volumes, respectively. The surface dose increased in the model of small breast volume without significance (p = 0.39). The linear analysis between surface dose and the incident angle is y = 0.5258x + 69.648, R2 = 0.7131 (x: incident angle and y: surface dose). We develop the percentage of skin surface dose with reference to a depth of 1 cm (PSDR1cm) to normalize the inhomogeneous dose. The relationship between incident angle and PSDR1cm is y = 0.1894x + 36.021, R2 = 0.6536 (x: incident angle and y: PSDR1cm) by linear analysis. In conclusion, the surface dose in whole breast irradiation could be estimated from this linear relationship between PSDR1cm and incident angle in daily clinical practice by cTPS. Further in vivo data should be studied to verify this formula

    Potential osmoprotective roles of branchial heat shock proteins towards Na+, K+-ATPase in milkfish (Chanos chanos) exposed to hypotonic stress

    No full text
    In euryhaline teleosts, osmoregulatory mechanisms vary with osmotic stresses, and heat shock proteins (HSPs) play a central role in maintaining cellular homeostasis. The present study aimed to investigate the expression and potential roles of HSP70 and HSP90 in the gills of seawater (SW)- and freshwater (FW)-acclimated milkfish (Chanos chanos). Four HSP genes, including Cchsc70 (heat shock cognate 70), Cchsp70, Cchsp90α, and Cchsp90β, were analyzed in milkfish gills. Among these genes, only the mRNA abundance of branchial Cchsp90α was significantly lower in the FW-acclimated than in the SW-acclimated milkfish. Immunoblotting showed no significant difference in the relative protein abundance of branchial HSP70 and HSP90 between the two groups. The time-course experiments (from SW to FW) showed that the protein abundance of HSP70 and HSP90 at the 3 h and 6 h post-transfer and then declined gradually. To further illustrate the potential osmoregulatory roles of HSP70 and HSP90, their interaction with Na+, K+-ATPase (NKA, the primary driving force for osmoregulation) was analyzed using co-immunoprecipitation. The results showed the interaction between HSP70, HSP90 and NKA after acclimation to SW or FW increased within 3 h; and then returned to normal levels within 7 days. To our knowledge, the present study was the first to demonstrate that the interaction between HSP70, HSP90 and NKA changes with hypotonic stress in euryhaline teleosts. Before the transfer, no interaction was detected. When transferred to FW from SW, the interaction of HSP70 and HSP90 with NKA were detected. The results suggested that HSP70 and HSP90 participated in the acute responses of osmoregulatory mechanisms to protect branchial NKA from hypotonic stress in milkfish
    corecore