100 research outputs found

    Contributions of Atmospheric Deposition to Pb Concentration and Isotopic Composition in Seawater and Particulate Matters in the Gulf of Aqaba, Red Sea

    Get PDF
    Lead concentrations [Pb] and isotope ratios (Pb-206/Pb-207, Pb-208/Pb-207) have been measured in samples of total suspended particulate (TSP) aerosols, seawater, and suspended and sinking particles in the Gulf of Aqaba (GOA), Red Sea. Isotope ratios of Pb in seawater and in the soluble fraction of Pb in atmospheric TSP were similar suggesting that TSP is an important source of Pb in this area. Pb concentrations in seawater measured in this study (max 76.8 pmol kg(-1)) were much lower than those recorded at the same location in 2003-2004 (up to 1000 pmol kg(-1)). Changes in Pb isotope ratios in TSP depositions in these years indicate that leaded gasoline was responsible for the high dissolved Pb in GOA more than a decade ago and that recent regulation reduced Pb contamination. The similarity in Pb isotope ratios in suspended and sinking particles implies close interactions between these two size fractions. This study demonstrates the effect of the phasing out of leaded gasoline on TSP and seawater Pb chemistry in the Northern GOA; the rate of change in dissolved Pb concentrations in the GOA is faster than that reported for the open ocean possibly due to higher particle scavenging and the relatively short residence time of deep water in the Basin

    The Calcium Isotope Systematics of the Late Quaternary Dead Sea Basin Lakes

    Get PDF
    We report the calcium isotopic composition (δ44Ca) of primary aragonite laminae, primary gypsum, and secondary gypsum in sediments deposited from Lake Lisan, the last glacial cycle of the Dead Sea (70–14.5 ka). The δ44Ca of primary gypsum varies between 0.17‰ and 0.71‰ versus bulk silicate earth, with an average of 0.29‰, whereas the aragonite δ44Ca varies between −0.68‰ and −0.16‰ with an average of −0.4‰. The secondary gypsum δ44Ca is close to the calcium isotope composition of the aragonite, averaging at −0.3‰. The aragonite δ44Ca shows small variations temporally in sync with lake level fluctuations, suggesting the aragonite δ44Ca reflects changes in the lake calcium balance, which in turn reflects changes in the local hydrological cycle. The secondary gypsum calcium isotope composition (−0.3‰) overlaps with that of coeval aragonite, suggesting the calcium for secondary gypsum was derived from the aragonite through quantitative, or near‐isotopic equilibrium, recrystallization of the aragonite to gypsum after the lake desiccation and exposure of sediments during the Holocene. A numerical box model is used to explore the effect of changing lake water levels on the calcium isotope composition of the aragonite and gypsum in the lake. The relatively low variability in the δ44Ca over the lake's history suggests that a high‐concentration calcium‐rich brine buffers the calcium cycle

    230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Costa, K. M., Hayes, C. T., Anderson, R. F., Pavia, F. J., Bausch, A., Deng, F., Dutay, J., Geibert, W., Heinze, C., Henderson, G., Hillaire-Marcel, C., Hoffmann, S., Jaccard, S. L., Jacobel, A. W., Kienast, S. S., Kipp, L., Lerner, P., Lippold, J., Lund, D., Marcantonio, F., McGee, D., McManus, J. F., Mekik, F., Middleton, J. L., Missiaen, L., Not, C., Pichat, S., Robinson, L. F., Rowland, G. H., Roy-Barman, M., Alessandro, Torfstein, A., Winckler, G., & Zhou, Y. 230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean. Paleoceanography and Paleoclimatology, 35(2), (2020): e2019PA003820, doi:10.1029/2019PA003820.230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of 230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of 230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (>1,000 m water depth).We thank Zanna Chase and one anonymous reviewer for valuable feedback. K. M. C. was supported by a Postdoctoral Scholarship at WHOI. L. M. acknowledges funding from the Australian Research Council grant DP180100048. The contribution of C. T. H., J. F. M., and R. F. A. were supported in part by the U.S. National Science Foundation (US‐NSF). G. H. R. was supported by the Natural Environment Research Council (grant NE/L002434/1). S. L. J. acknowledges support from the Swiss National Science Foundation (grants PP002P2_144811 and PP00P2_172915). This study was supported by the Past Global Changes (PAGES) project, which in turn received support from the Swiss Academy of Sciences and the US‐NSF. This work grew out of a 2018 workshop in Aix‐Marseille, France, funded by PAGES, GEOTRACES, SCOR, US‐NSF, Aix‐Marseille Université, and John Cantle Scientific. All data are publicly available as supporting information to this document and on the National Center for Environmental Information (NCEI) at https://www.ncdc.noaa.gov/paleo/study/28791

    The environmental setting of Epipalaeolithic aggregation site Kharaneh IV

    Get PDF
    The archaeological site of Kharaneh IV in Jordan's Azraq Basin, and its relatively near neighbour Jilat 6 show evidence of sustained occupation of substantial size through the Early to Middle Epipalaeolithic (c. 24,000 - 15,000 cal BP). Here we review the geomorphological evidence for the environmental setting in which Kharaneh IV was established. The on-site stratigraphy is clearly differentiated from surrounding sediments, marked visually as well as by higher magnetic susceptibility values. Dating and analysis of off-site sediments show that a significant wetland existed at the site prior to and during early site occupation (~ 23,000 - 19,000 BP). This may explain why such a substantial site existed at this location. This wetland dating to the Last Glacial Maximum also provides important information on the palaeoenvironments and potential palaeoclimatic scenarios for today's eastern Jordanian desert, from where such evidence is scarce

    Using palynology to re-assess the Dead Sea laminated sediments – indeed varves?

    Get PDF
    Lacustrine laminated sediments are often varves representing annual rhythmic deposition. The Dead Sea high-stand laminated sections consist of mm-scale alternating detrital and authigenic aragonite laminae. Previous studies assumed these laminae were varves deposited seasonally. However, this assumption has never been robustly validated. Here we report an examination of the seasonal deposition of detrital-aragonite couplets from two well-known Late Holocene laminated sections at the Ze’elim fan-delta using palynology and grain-size distribution analyses. These analyses are complemented by the study of contemporary flash-flood samples and multivariate statistical analysis. Because transport affects the pollen preservation state, well–preserved (mostly) air-borne transported pollen was analysed separately from badly-preserved pollen and fungal spores, which are more indicative of water transport and reworking from soils. Our results indicate that (i) both detrital and aragonite laminae were deposited during the rainy season; (ii) aragonite laminae have significantly lower reworked and fungal spore concentrations than detrital and flash-flood samples; and (iii) detrital laminae are composed of recycling of local and distal sources, with coarser particles that were initially deposited in the Dead Sea watershed and later transported via run-off to the lake. This is in line with previous carbon balance studies that showed that aragonite precipitation occurs after the massive input of TCO2 associated with run-off episodes. Consequently, at least for the Holocene Ze’elim Formation, laminated sediments cannot be considered as varves. Older Quaternary laminated sequences should be re-evaluated

    \u3csup\u3e230\u3c/sup\u3eTh Normalization: New Insights on an Essential Tool for Quantifying Sedimentary Fluxes in the Modern and Quaternary Ocean

    Get PDF
    230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of 230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of 230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (\u3e1,000 m water depth)

    Geometry and subsidence history of the Dead Sea basin : a case for fluid-induced mid-crustal shear zone?

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Journal of Geophysical Research 117 (2012): B01406, doi:10.1029/2011JB008711.Pull-apart basins are narrow zones of crustal extension bounded by strike-slip faults that can serve as analogs to the early stages of crustal rifting. We use seismic tomography, 2-D ray tracing, gravity modeling, and subsidence analysis to study crustal extension of the Dead Sea basin (DSB), a large and long-lived pull-apart basin along the Dead Sea transform (DST). The basin gradually shallows southward for 50 km from the only significant transverse normal fault. Stratigraphic relationships there indicate basin elongation with time. The basin is deepest (8–8.5 km) and widest (~15 km) under the Lisan about 40 km north of the transverse fault. Farther north, basin depth is ambiguous, but is 3 km deep immediately north of the lake. The underlying pre-basin sedimentary layer thickens gradually from 2 to 3 km under the southern edge of the DSB to 3–4 km under the northern end of the lake and 5–6 km farther north. Crystalline basement is ~11 km deep under the deepest part of the basin. The upper crust under the basin has lower P wave velocity than in the surrounding regions, which is interpreted to reflect elevated pore fluids there. Within data resolution, the lower crust below ~18 km and the Moho are not affected by basin development. The subsidence rate was several hundreds of m/m.y. since the development of the DST ~17 Ma, similar to other basins along the DST, but subsidence rate has accelerated by an order of magnitude during the Pleistocene, which allowed the accumulation of 4 km of sediment. We propose that the rapid subsidence and perhaps elongation of the DSB are due to the development of inter-connected mid-crustal ductile shear zones caused by alteration of feldspar to muscovite in the presence of pore fluids. This alteration resulted in a significant strength decrease and viscous creep. We propose a similar cause to the enigmatic rapid subsidence of the North Sea at the onset the North Atlantic mantle plume. Thus, we propose that aqueous fluid flux into a slowly extending continental crust can cause rapid basin subsidence that may be erroneously interpreted as an increased rate of tectonic activity.Fieldwork was funded by U.S. AID Middle Eastern Regional Cooperation Program grant M21–012, with in-kind contributions by Al-Balqa’ Applied University (Jordan), the Geophysical Institute of Israel, and the U.S. Geological Survey
    corecore