
Revealing the pace of river landscape evolution during the Quaternary: recent 1 

developments in numerical dating methods  2 

 3 

Gilles Rixhon, Rebecca M. Briant, Stéphane Cordier, Mathieu Duval, Anna Jones, Denis Scholz 4 

 5 

Abstract 6 

During the last twenty years, several technical developments have considerably intensified the use of 7 

numerical dating methods for the Quaternary. The study of fluvial archives has greatly benefited from 8 

these enhancements, opening new dating horizons for a range of archives at distinct time scales and 9 

thereby providing new insights into previously unanswered questions. In this contribution, we 10 

separately present the state of the art of five numerical dating methods that are frequently used in the 11 

fluvial context: radiocarbon, Luminescence, Electron Spin Resonance (ESR), 230Th/U and terrestrial 12 

cosmogenic nuclides (TCN) dating. We focus on the major recent developments for each technique 13 

that are most relevant for new dating applications in diverse fluvial environments and on explaining 14 

these for non-specialists. Therefore, essential information and precautions about sampling strategies 15 

in the field and/or laboratory procedures are provided. For each method, new and important 16 

implications for chronological reconstructions of Quaternary fluvial landscapes are discussed and, 17 

where necessary, exemplified by key case studies. A clear statement of the current technical 18 

limitations of these methods is included and forthcoming developments, which might possibly open 19 

new horizons for dating fluvial archives in the near future, are summarised. 20 
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1. Introduction 25 

Unravelling processes and rates of long-term landscape evolution, focusing on the evolution of river 26 

drainage systems, has been a core topic in the earth surface sciences since Davis’s (1899) pioneering 27 

work more than a century ago. Since then, river terrace sequences and/or related landforms have thus 28 
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been extensively used as geomorphic markers across the world. However, assigning chronologies to 29 

these sequences and related river sediments or landforms has constantly been challenging. Until the 30 

late 20th century, this goal was often achieved using diverse methods that provide relative age 31 

information on Quaternary fluvial deposits. Such methods included: correlation with the alpine glacial 32 

chronology (e.g. Brunnacker et al., 1982), soil chronosequences (e.g. Engel et al., 1996), 33 

palaeomagnetism (e.g. Jacobson et al., 1988), clast seismic velocity (e.g. Crook, 1986), weathering 34 

rind analysis (e.g. Colman & Pierce, 1981), obsidian hydration (e.g. Adams et al., 1992), amino-acid 35 

racemization of terrestrial molluscs (e.g. Bates, 1994) or correlation to Marine Isotope Stages (MIS) 36 

via mammalian (e.g. Schreve, 2001) and molluscan (e.g. Preece, 1999) biostratigraphy. Combining 37 

these methods often yielded insightful relative chronologies for Quaternary terrace flights (e.g. 38 

Knuepfer, 1988; Schreve et al., 2007). 39 

Whilst methodological improvements to some of these techniques have since been achieved (e.g. 40 

Penkman et al., 2007 for amino-acid racemization), in most instances, relative dating methods have 41 

been progressively supplemented by dating methods delivering absolute numerical ages over the last 42 

two or three decades. With the exception of radiocarbon dating, which has been applied since Libby’s 43 

seminal paper (Libby et al., 1949), the development of most of these geochronometers occurred in 44 

relation to major theoretical and/or technical improvements in the late 20th century. For instance, 45 

although cosmic rays were discovered in 1912 by the Nobel laureate Victor Hess, only the 46 

development of accelerator mass spectrometers (AMS) in the 1980s enabled measurements of 47 

cosmogenic nuclide concentrations (e.g. Klein et al., 1982) and thus their use as a geochronometer 48 

(e.g. Nishiizumi et al., 1986). Likewise, Electron Spin Resonance (ESR) spectroscopy, already 49 

outlined in the mid 1930s (Gorter, 1936), was first successfully applied as a dating tool only 40 years 50 

later (Ikeya, 1975). 51 

In the framework of this FLAG (Fluvial Archives Goup) special issue, we present and discuss the 52 

recent major dating advances offered by modern numerical methods in diverse fluvial environments. 53 

Five methods are discussed: radiocarbon, Luminescence, Electron Spin Resonance, 230Th/U and 54 

terrestrial cosmogenic nuclide (TCN) dating. They were specifically selected amongst the array of 55 

Quaternary dating methods because (i) they are commonly used in the fluvial context, (ii) they have all 56 

experienced major theoretical and/or technical developments during recent decades, (iii) they require 57 

different dateable material and thereby may also yield information about a wide range of fluvial 58 

processes and environments, (iv) they have different time ranges of application, but altogether, span 59 



the last million years (Fig. 1). Detailing all theoretical principles of the individual techniques is beyond 60 

the scope of this contribution. Instead, the focus is on relevant major technical developments and how 61 

these enabled new dating applications for different kinds of fluvial archives in distinct settings. The 62 

pathways of dateable material within fluvial systems are detailed in Figure 2. Fundamental information 63 

and precautions about sampling strategies in the field and/or laboratory procedures are also provided. 64 

Whilst these are well known by geochronologists, they have not often been published and need 65 

therefore to be clarified to non-specialists who intent to collect samples for dating. For each method, 66 

new and important implications for chronological reconstructions of Quaternary fluvial landscapes are 67 

also discussed and, if necessary, exemplified. Case studies published in outputs related to former 68 

FLAG activities and using one (or more) of these dating method(s) are listed in Table 1. Current 69 

technical limitations and probable forthcoming developments are also addressed.  70 

2. Radiocarbon dating of fluvial deposits 71 

Radiocarbon dating has been a common method applied to fluvial deposits in those settings where 72 

organic material is readily preserved within sequences, i.e. partially or fully waterlogged parts of the 73 

floodplain system, including channels and overbank deposits (Fig. 2). As a technique it has 74 

contributed significantly to understanding key questions, both about palaeoenvironmental information 75 

contained within fluvial deposits (e.g. Kasse et al., 1995) and about periods of river activity (e.g. 76 

Macklin et al., 2005). The accuracy with which age estimates can be gained from ever smaller 77 

samples has improved significantly over the 60-70 years since the first development of the technique. 78 

This is partly due to the increasingly routine use of accelerator mass spectrometry (AMS) 79 

measurements of smaller samples (~1 mg in some cases, Ruff et al., 2010, but more robustly 5-6 mg, 80 

Brock et al., 2010). Another important development has been the significant international cooperation 81 

involved in calibrating radiocarbon measurements against independent annually-resolved records to 82 

account for natural variability in the concentration of atmospheric 14C, culminating most recently in the 83 

IntCal13 dataset (Reimer et al., 2013). 84 

The 14C dating method can be applied to any material that contains carbon. This includes: cellulose-85 

containing materials (wood, seeds, plant remains), charcoal and charred material, carbonates 86 

(including corals, foraminifera, shells), collagen-containing materials (bone, tooth, antler, ivory), hair, 87 

and bulk sediment. Many of these are found within fluvial deposits in more temperate environments, 88 

where preservation conditions are favourable, but not all are in situ (Fig. 2). Therefore, when 89 



considering the radiocarbon dating of fluvial deposits, we need to consider the issue of provenance 90 

and reworking. In addition, calibration, reservoir effects and appropriate pretreatments are also 91 

relevant to fluvial archives in lakes, but reviewed elsewhere (Brauer et al., 2014). 92 

All present-day carbon-bearing material contains three naturally occurring carbon isotopes. Of these, 93 

14C is radioactive, with a half life of 5730 ± 40 years (Godwin, 1962). The source of this 14C is cosmic 94 

ray activity in the atmosphere. This enters the global carbon cycle when it is oxidised to CO2, and 95 

concentrations are very low compared to 12C and 13C. Conventional radiocarbon ages are calculated 96 

from measured concentrations of 14C, using either beta counting methods or, meanwhile more 97 

commonly, AMS. To allow consistency with earlier analyses, these are reported using the original 98 

Libby half life of 5568 years (e.g. Stuiver and Polach, 1977; Reimer et al., 2004). They are also 99 

corrected for fractionation processes that occur during measurement, as described by Brauer et al. 100 

(2014). Because of the multiple stages at which differences can occur within the calculation of a 101 

radiocarbon age, they should be reported in detail according to the conventions described by Millard 102 

(2014). 103 

2.1. Provenance and reworking of radiocarbon samples in the fluvial environment 104 

A feature of fluvial systems is the wide range of depositional environments which may be found within 105 

a single catchment, including, for instance, river channel, floodplain and floodbasin deposits. These 106 

differ in frequency of depositional events, deposited grain sizes and likely presence of in situ organics 107 

(Fig. 2). The nature and rate of fluvial activity within a reach determine the spatial distribution of 108 

depositional environments and their preservation within the alluvial record (Lewin and Macklin, 2003). 109 

The depositional context of a radiocarbon-dated sample determines its suitability for answering 110 

questions about the timing of events within a fluvial system. Where possible, a distinction should 111 

therefore be made between radiocarbon dates from within thick sedimentary units and those collected 112 

at or close to boundaries between units. The former provide a single age for processes, such as 113 

vertical sediment accretion or lateral channel migration, operating over an extended time period 114 

(Lewin et al., 2005), while the latter constrain the timing of events in the river system that produced 115 

sedimentological changes (Macklin and Lewin, 2003). In Late Pleistocene to Holocene settings, where 116 

detailed sedimentological information is more commonly preserved, radiocarbon dates on fluvial units 117 

have been classified as river activity ages, in minerogenic sediment, or river stability ages, on peat or 118 

palaeosols (Zielhofer and Faust, 2008). Sedimentary units indicative of river activity and river stability 119 



may be produced simultaneously in different depositional environments within a single reach (Zielhofer 120 

and Faust, 2008). Radiocarbon dates close to sediment unit boundaries provide maximum or 121 

minimum ages for events which produced features such as reversals in fining upwards sediment 122 

sequences or renewed fluvial sedimentation above a peat or palaeosol (Macklin et al., 2005). 123 

Radiocarbon-dated samples from a unit directly below such a sedimentological change, giving a 124 

maximum age (‘change after’ dates), are regarded as the most reliable indicator of the age of the 125 

event which produced the change in sedimentation rate or grain size (Macklin et al., 2010). In older 126 

deposits, where fewer units are amenable to radiocarbon dating, such precise analysis of how the 127 

dates relate to fluvial activity is less feasible. Nonetheless, the sedimentological setting should be 128 

assessed in a similar way so that the age estimate obtained can be most effectively interpreted. In 129 

addition, care should be taken to interpret the different transport pathways of the type of material to be 130 

dated. 131 

Further to their diversity, river catchment systems are highly dynamic and material can be transported 132 

varying distances from the original source. It can also be kept in storage on hillslopes or within 133 

floodplains and released into the channel tens to thousands of years afterwards (Fig. 2). Therefore, 134 

when radiocarbon dating material from fluvial deposits, the possibility of reworking must always be 135 

borne in mind. This can be especially problematic in relation to carbon-bearing material that does not 136 

easily break down in transport (Fig. 2), for example wood, bone and some shells (either because they 137 

are calcitic, such as shell opercula, or because they are light and travel in suspension rather than 138 

bedload). Therefore, it is essential to date only the identifiable fraction of the deposit (Table 2). In 139 

addition to being identifiable, it is necessary to exercise common sense over how likely the material 140 

isolated is to have been contemporaneous with deposition (e.g. not choosing material suggesting a 141 

temperate climate if preserved within cold stage deposits). 142 

2.2. Calibration 143 

Due to natural variability in cosmic ray production and exchange between different carbon stores (i.e. 144 

ocean, terrestrial ecosystems and atmosphere) the concentration of 14C in the atmosphere varies over 145 

time. For this reason, to convert radiocarbon ages to calendar ages, a detailed calibration curve has 146 

been constructed from independently dated (often annually resolved) records including tree-rings, 147 

varves, corals and speleothems. The tree-ring curve extends to 13,900 cal years BP (Reimer et al., 148 

2013) and is the most robust part of the curve. The extension beyond this to 50,000 cal years BP is 149 



based on multiple datasets which diverge from each other in places, creating larger errors. The 150 

radiocarbon community meets regularly to review this curve and the most recent data set is IntCal13 151 

(Reimer et al., 2013) – or SHCal13 for the Southern Hemisphere (Hogg et al., 2013), which is now 152 

included in all calibration software (e.g., CALIB, OxCal, BCal). The output of calibration is an interval 153 

of possible calendar ages that correspond to the 14C age calculated from the measured 14C 154 

concentration. Often multiple intervals correspond to the measured concentration. 155 

2.3. Freshwater reservoir effects and radiocarbon dating of fluvial archives 156 

When dating plant or shell material, the preferred habitat of the species used is crucial. If the material 157 

to be dated is from an aquatic species, the chemistry of the water body must be taken into account. 158 

The presence of ‘old carbon’ which is ‘dead’ with respect to radiocarbon can lead the 14C of the water 159 

to have an apparent age. This apparent age is then transferred to the material being dated. This issue 160 

has been known for many years, with very early studies showing that Potamageton, an aquatic plant 161 

which is believed to photosynthesise within the water column, yielded an apparent age in modern 162 

hardwater lakes of ~2000 years (Deevey et al., 1954). For this reason, the first choice of material to 163 

date would instead be a plant which photosynthesises directly with the atmosphere such as Scirpus or 164 

Carex (Deevey et al., 1954). 165 

Determining the freshwater reservoir effect in lakes (where some fluvial archives are found) is based 166 

on the assumption that the effect has remained constant and can be corrected for. In relation to rivers, 167 

this is more problematic because most studies (e.g. Deevey et al., 1954) have been carried out in 168 

lakes. A recent study (Philippsen, 2013) of water, plants and animals from rivers in northern Germany 169 

showed significant temporal variability in the scale of reservoir age in both the dissolved inorganic 170 

carbon (DIC) from river water itself (a range of 1527-3044 years) and the reservoir age in aquatic 171 

plants (a range of 350-2690 years). Of particular interest is the finding that the radiocarbon values 172 

from river water are directly related to the balance between groundwater and precipitation inputs to the 173 

system. When precipitation was higher before samples were taken, associated radiocarbon reservoir 174 

ages of river water were younger. This means that the freshwater reservoir effect in fluvial deposits is 175 

likely to be present, but to varying degrees. The main way to avoid this issue is to date only terrestrial 176 

species of plants or molluscs (Table 2), which requires the investigator to develop some skills in fossil 177 

identification. Brauer et al. (2014, p.49) recommend for lake or speleothem sequences that where 178 

samples known to be affected by a freshwater reservoir effect have been measured, these ”must be 179 



corrected prior to calibration by subtraction of the age offset estimated using the measured 14C 180 

concentration of known age samples”. In the fluvial setting, given the demonstrable variability in 181 

freshwater reservoir effect in relation to discharge, and the known large fluctuations in discharge 182 

regime over the time period of the radiocarbon technique, this is unlikely to be possible. The 183 

radiocarbon dating of aquatic species should therefore be avoided unless a 2000 year uncertainty is 184 

sufficient to answer the research question being posed. 185 

2.4. Laboratory pretreatments 186 

Because the concentrations of 14C are so low in materials used for radiocarbon dating, the possibility 187 

of contamination with modern carbon is always present. Contamination during sample preparation can 188 

be avoided as detailed in Table 2. Removing contamination that has accumulated in situ requires 189 

laboratory pretreatment (Table 2) and becomes more crucial for samples near the limit of the 190 

radiocarbon technique between 30,000-50,000 14C years BP, because the amount of 14C present 191 

within the sample is so low that any contamination has a much larger effect (Fig. 3). This is particularly 192 

important in many discontinuous fluvial sequences where problems with dating cannot be detected in 193 

the context of a vertical sequence. 194 

Significant progress has been made in recent years in providing more reliable radiocarbon ages on 195 

bone and charcoal from this older time period (e.g. Higham et al., 2006; Bird et al., 1999) and these 196 

pretreatments should be used for these materials. However, fluvial sequences sometimes lack these 197 

dating materials, which are best preserved in dry, alkaline conditions (the opposite of the wet, acidic 198 

conditions often present in fluvial systems for the preservation of environmental material). There are 199 

as yet no ‘stand-out’ preferred pretreatments for the shell or seed material more commonly preserved 200 

in fluvial deposits, and advice should be sought from the radiocarbon laboratory with which you are 201 

working if the samples are likely to be near the limit of the technique. 202 

3. Luminescence dating of fluvial deposits 203 

The Optically Stimulated Luminescence (OSL) dating method is currently one of the most commonly 204 

applied to fluvial sediments because it directly dates the sand/silt grains of which such sediments are 205 

often composed. These grains enter the river system from hillslopes and then travel in suspension 206 

through the fluvial system, passing into and out of storage before final deposition (Fig. 2). This method 207 

was developed during the 1980s as an alternative to Thermoluminescence (TL). It became widely 208 

used ~15 years ago, in particular due to the development of the Single Aliquot Regenerative (SAR) 209 



protocol (Murray and Wintle, 2000; 2003) which replaced previous additive approaches. The SAR 210 

protocol enables multiple age estimates to be measured from a single sample, generating more 211 

accurate final ages (Duller, 2008). Continuous improvements to precision and accuracy have occurred 212 

during past decades, giving the OSL method a key role in the dating of Quaternary fluvial archives. 213 

Many publications in special issues of the FLAG include an OSL-based geochronological approach 214 

(Table 1). Questions that have been answered by using this approach encompass, for example, the 215 

timing of phases of fluvial activity in relation to climate (e.g. Briant et al., 2004) or the dating of terrace 216 

bodies associated with archaeology (e.g. Cunha et al., 2012; this issue/2016). 217 

Several relevant reviews related to the technical details of optical dating of fluvial deposits have been 218 

published (e.g. Wallinga, 2002; Rittenour, 2008), so the principles and basic procedures are here only 219 

briefly mentioned. Instead, we focus particularly on what researchers working on fluvial archives need 220 

to know to successfully apply this method to their samples. This includes sampling strategies, new 221 

protocols and statistical treatment of data required to derive reliable age estimates.  222 

The OSL method is based on the estimation of the impact of radiation on the crystalline structure of 223 

minerals such as quartz and feldspar while they are shielded from light (e.g. Duller, 2004). The 224 

radiation (α, β, γ) comes from radionuclides which are present in the mineral and its natural 225 

environment, mainly U, Th (and their decay products) and K, with a small proportion from cosmic 226 

particles. This radiation leads to the trapping of electrons in crystalline lattice defects. The total amount 227 

of trapped electrons within a crystal is proportional to the total energy (dose) absorbed by the crystal, 228 

which naturally increases with time. As soon as the mineral is exposed to sunlight, especially during its 229 

transport, trapped electrons are released from the traps. This generates the emission of light (the 230 

luminescence signal) which can be measured following light stimulation (Huntley et al., 1985). The age 231 

of the sediment is then estimated by dividing the DE (equivalent dose) by the dose rate (the rate at 232 

which the sediment is exposed to natural radiation).  233 

It should be noted that the sensitivity of mineral grains to optical stimulation is highly variable, making 234 

some depositional settings inherently more successful than others. “Quartz grains that have 235 

undergone repeated cycles of bleaching and deposition tend to become sensitized ... and so for some 236 

samples a large fraction of quartz grains will yield a measurable OSL signal... [In contrast], samples 237 

from any environment can show poor sensitivity and highly-skewed sensitivity distributions ...[where]... 238 

95% of the combined OSL signal  comes from less than 5% of the grains” (Cunningham and Wallinga, 239 

2012, p.17). In addition, the commonly-used SAR protocol may not be applicable for all samples. 240 



Standard tests for the appropriateness of the SAR protocol include the use of a dose response test 241 

(i.e. can the laboratory protocol successfully remeasure a known dose?) and the recycling ratio (i.e. 242 

does the test dose successfully correct for sensitivity changes during measurement?). However, 243 

recent experimental work suggests that these may be insufficient tests (Guerin et al., 2015; Timor-244 

Gabar et al., 2015). It is possible that this is due to an initial sensitivity change that is not corrected for 245 

by the use of the response to a test dose.  246 

3.1. Causes of age underestimation 247 

The complexities involved in generating a luminescence signal mean that in some cases it is not 248 

possible to provide a reliable age determination, either over- or under-estimating the age of the 249 

sediment. Underestimation may occur when the mineral is saturated. This means that all traps have 250 

been filled with electrons, thus preventing additional trapping. The measured signal will hence only 251 

reflect a part of the burial duration, and the obtained age must be considered as a minimum age. 252 

Saturation explains why the OSL method cannot be applied to old sediments. The age limit varies 253 

between minerals, but quartz often saturates at doses of ~200-300 Gy (Table 3, Wintle and Murray, 254 

2006). This makes it difficult to date sediments beyond 150 ka (except when the dose rate is quite 255 

low). 256 

Feldspars in contrast saturate at higher doses and may in theory be used to date Middle Pleistocene 257 

sediments (Table 3). However, feldspars are affected by anomalous fading. This is the spontaneous 258 

eviction of electrons from deep traps without light stimulation (Wintle, 1973) which can then lead to 259 

age underestimation. Several procedures have been developed to detect and correct for anomalous 260 

fading by estimating fading rates (Huntley and Lamothe, 2001). Another approach is the post-IR-IRSL 261 

procedure (Thomsen et al., 2008). This procedure is based on the measurement of an elevated 262 

temperature (>200°C) post-IR IRSL signal immediately after the IRSL measurement (typically 263 

performed at 50 °C). The post-IR IRSL signal is characterised by a higher stability and thus yields 264 

lower fading rates (Buylaert et al., 2009). However, the post-IR IRSL signal is harder to bleach than 265 

the IRSL signal. 266 

3.2. Fluvial transport and incomplete bleaching: a main source of age overestimation 267 

The physical principles behind OSL suggest that the method is well suited to the study of fluvial 268 

sediments, since it allows direct dating of the last transport-and-sedimentation process (Table 3). 269 

However, in addition to the mineral-related issues described above, a key issue related to the dating of 270 



fluvial sediments is the potential occurrence of incomplete bleaching. This phenomenon occurs when 271 

grains have not been exposed to sufficient daylight during transport. In this case, a part of the 272 

measured OSL signal is formed by electrons that remained trapped despite the fluvial transport 273 

(inherited component; Murray and Olley, 2002). This leads to an overestimation of the age, which is 274 

significant in the case of young sediments (less than 2 ka; Jain et al., 2004), but may also affect older 275 

sediments. For this reason, the detection and avoidance of incomplete bleaching is fundamental to 276 

obtain reliable burial ages to infer the timing of deposition. 277 

In the case of fluvial sediments, these should be selected for sampling to maximise bleaching in the 278 

depositional setting. The degree of bleaching of the individual grains depends on two main parameters 279 

(Stokes et al., 2001): transport length, and the transport conditions. Sufficient transport is necessary to 280 

ensure complete bleaching of the signal. Studies focusing on transport length showed that the 281 

inherited signal was significantly reduced after a transport of several tens or hundreds of km (Murray 282 

and Olley, 2002). The second parameter refers to the way the grains are transported and includes, 283 

amongst others, the water turbidity and the channel depth. Grains that have been transported in a 284 

deep water column (leading to strong attenuation of the solar spectrum) and/or in turbid water may 285 

therefore be incompletely bleached (e.g. Ditlefsen, 1992). Settings in which samples are more or less 286 

likely to be completely bleached are represented in Figure 2. However, the expertise of the researcher 287 

must be employed at the site to truly maximise the likelihood of sampling completely bleached 288 

material, since the presence of turbid water or a deep water column will usually leave a sedimentary 289 

signature. 290 

3.3. The importance of the sampling strategy 291 

Following from this, the sampling strategy should aim to collect the potentially best bleached grains, 292 

keeping in mind that the OSL method is mainly applied to sand- (100-250 µm) or silt- (4-11 µm) sized 293 

grains. This makes it necessary to perform fine sedimentological investigations to interpret the 294 

depositional locations (i.e. channel/palaeochannels, point bar, crevasse splay, floodplain deposits). 295 

Most sediments analysed to date have been collected in channels or point bars (Figs. 2&4), as these 296 

are more clearly associated with significant transport of the grains. OSL dating of floodplain deposits is 297 

less common, but possible especially in the case of sandy facies (Keen-Zebert et al., 2013). 298 

Considering the sedimentation process is also very important, as the exposure to sunlight will be 299 

different in a flood dominated river (typical of Mediterranean or semi-arid areas) or a less ephemeral 300 

river. In the latter, presence of a more regular water flow will allow grains to be more completely 301 



bleached, while in the former case mass transport associated with floods may prevent complete 302 

zeroing (Bartz et al., 2015). 303 

In common with all depositional locations, the sampling should ideally be performed in thick (>30 cm 304 

both above and below the sample) homogeneous layers, to ensure that the dose rate estimation is as 305 

simple as possible (Fig. 4a). This is particularly important if the field scientist does not have access to 306 

a field gamma spectrometer which can capture the dose rate from this full radius of gamma radiation 307 

(Fig. 4b). In the common case of a thinner bed surrounded by inhomogenous sediments, detailed 308 

attention should be paid to the ‘micro-stratigraphy’ and small samples for laboratory dose rate 309 

measurement taken from all sediment types within a 30 cm radius of the sample. These can have 310 

sigificantly different dose rates (clays are often higher, gravels lower) and this can be adjusted for 311 

using the methods published by Aitken (1985) if such samples are taken. It is worth being aware, 312 

however, that the greater complexity of dose rates and lower likelihood of complete bleaching may 313 

make the results from such samples hard to interpret. 314 

The choice of the mineral to be studied as a dosimeter is also crucial, if a choice is possible. Both 315 

theoretical work and comparative analyses by Wallinga et al. (2001) showed for Upper Pleistocene to 316 

Holocene sediments that quartz was a preferred dosimeter. The quartz grains are more rapidly 317 

bleached than feldspars (a few seconds vs a few tens of seconds, Huntley et al., 1985), and not 318 

affected by anomalous fading. For older deposits, trade offs must be made, and feldspars may be 319 

selected to allow dating of older deposits, with anomalous fading effects taken into account and 320 

corrected for as well as possible. 321 

This sedimentological approach is fundamental in selecting the grains with the best properties for 322 

dating. However, it may in some cases not be sufficient to avoid heterogeneous bleaching. There are 323 

measurement protocols that seek to avoid partial bleaching by measuring or reporting only the well-324 

bleached component within a sample (e.g. ‘early background subtraction’, Cunningham and Wallinga, 325 

2010, or combined IR and OSL stimulation, Jain et al., 2005). However, none of these methods have 326 

become mainstream approaches as yet. It is also worth noting that field investigations and sampling 327 

may benefit from the use of recently developed portable readers (Sanderson and Murphy, 2010). 328 

These make it possible to broadly estimate luminescence intensities and, when combined with insitu 329 

gamma spectrometry, the depositional age. Whilst the precision is too low for this to replace laboratory 330 

measurements, it may be a useful tool in the case of complex depositional patterns, to detect 331 



potentially problematic samples and guide sampling strategies (Stone et al., 2015). It has yet to be 332 

tested on fluvial sediments, or at the lower luminescence intensities typical of temperate-zone 333 

samples. 334 

3.4. Detection of incomplete bleaching during OSL measurements and statistical treatments to 335 

address this issue 336 

Incomplete bleaching can be detected while performing luminescence measurements in the 337 

laboratory. Large-scale assessments can be made firstly by measuring both quartz and feldspars for a 338 

given sample. As the dosimeters have different bleaching rates, obtaining comparable ages provides 339 

evidence for complete zeroing of the sediments prior to burial (Colarossi et al., 2015). The testing of 340 

modern analogues (recent sediments transported under conditions similar to those under study) may 341 

also be useful (e.g. Geach et al., 2015), provided such sediments are available.  342 

It is possible to statistically separate different parts of the luminescence signal to isolate the ‘fast’ 343 

component, which is most easily bleached (e.g. Singarayer and Bailey, 2004). The most common way 344 

of detecting incomplete bleaching in the laboratory, however, is through investigation of the distribution 345 

of multiple age estimates from a sample. The SAR protocol is based on the measurement of multiple 346 

equivalent doses (from aliquots or single grains) for a given sample. The number of aliquots used 347 

varies, but Rodnight (2008) proposed 50 aliquots as a minimum based on analysis of a poorly 348 

bleached fluvial sample. In some case higher values are required or lower may be sufficient (Galbraith 349 

and Roberts, 2012). It is important that these measurements are performed on small aliquots or single 350 

grains to avoid averaging of the signal across the aliquot. 351 

The initial assumption is that a fully bleached sample will yield consistent DE values (excluding 352 

analytical uncertainty). Therefore, the presence of scattering in the DE distribution is taken as an 353 

indication that some aliquots have been incompletely bleached. Whilst this is commonly represented 354 

as a histogram or probability density function, recently many workers have started to use radial plots 355 

which allow the inclusion of information on the precision of each DE (e.g. Galbraith, 2010; Fig. 5). Use 356 

of appropriate statistical methods for plotting and choosing an average DE has been made simpler for 357 

the non-specialist by the recent development of the R package for Luminescence dating (Kreutzer et 358 

al., 2012). The overdispersion parameter, defined as the remaining dispersion after having considered 359 

the uncertainty sources associated with the measurement, is seen as an indicator of the likely 360 



presence of partial bleaching (Colarossi et al., 2015). However, it is difficult to propose a single 361 

threshold value for this since other parameters also influence overdispersion (Thomsen et al., 2012). 362 

Following investigation of the shape of the distribution, the DE value used for the final age 363 

determination is derived from several ‘age models’ (Lauer et al., 2010), all available in the R package 364 

for Luminescence (Fuchs et al., 2015). The most commonly used are the Common Age and Central 365 

Age Models (combining the calculation of overdispersion with that of the weighted mean), which are 366 

appropriate when the overdispersion is zero or low, respectively (no significant evidence for partial 367 

bleaching). The Minimum Age Model (Galbraith and Laslett, 1993) is used for samples with higher 368 

overdispersion values to identify the most well bleached aliquots and bases the age estimate on 369 

these. Finally the Finite Mixture Model (Galbraith and Green, 1990) can be applied to single grains 370 

only (Galbraith and Robert, 2012) and allows the detection of discrete populations. In all these cases, 371 

however, the choice of the age model to be used is often subjective, since there is no set threshold 372 

value of overdispersion to use for choosing between different age models. Bayesian methods have 373 

been used for a number of years by the radiocarbon community and are useful in robustly identifying 374 

outliers and thereby increasing precision. Such approaches have recently been tested on OSL 375 

samples (e.g. Cunningham and Wallinga, 2012; Guerin et al., 2015). Cunningham and Wallinga 376 

applied a combination of bootstrap likelihoods and Bayesian methods to young (<1 ka), partially 377 

bleached samples from a vertical floodplain sequence in the Netherlands. The bootstrap likelihoods 378 

were used to provide a probability density function for each sample that was statistically appropriate 379 

for Bayesian analysis. This approach was useful in this setting, but can only be applied where there is 380 

sufficient sample density for the stratigraphical relationships to be known and the age distributions to 381 

overlap. 382 

The need for such complex statistical treatment of the results may be considered a drawback of the 383 

luminescence dating method, since the obtained age is dependent on the model used. However, when 384 

explained fully and justified in relation to luminescence characteristics, this approach leads to greater 385 

confidence in the robustness of the results. The selection of the “best” model then derives from a 386 

rigorous analysis of all the available data, including not only the measurement values, but also the 387 

field and sedimentological evidence (which can be useful for example to assess the bleaching 388 

potential of the sediments). Furthermore, recent developments in the use of Bayesian statistics hold 389 

out a hope that a single approach to determining equivalent dose may soon be possible where 390 

stratigraphical relationships are clear. 391 



3.5. A key issue for the future: extending OSL dating to the Middle Pleistocene 392 

Whilst fluvial sediments of Middle Pleistocene age have been dated, especially using IRSL on 393 

feldspars, extending the age range to older sediments remains a major issue (Table 3). This is also of 394 

significant importance for the FLAG community as it will allow a longer-term reconstruction of valley 395 

evolution during the Pleistocene. Several protocols have been developed to date older sediments, 396 

including the pIR-IRSL method discussed above. 397 

For quartz, a new approach is the measurement of the Thermally Transferred OSL signals (TT-OSL; 398 

Wang et al., 2006). These signals are observed after stimulation and heating of the quartz grains and 399 

result from a complex charge transfer associated with the heating. As they saturate at much higher 400 

doses than the OSL signal, they might be used for dating older sediments (Table 3). Arnold et al. 401 

(2015) compared single-grain TT-OSL and pIR-IRSL at the Atapuerca hominin site where independent 402 

age control is available. When they used measurement temperatures of 225 °C, they found good 403 

agreement for both methods from ~240–930 ka, though pIR-IRSL measurements at 290 °C gave 404 

overestimates. Arnold et al. (2015) argue therefore that multiple methods should be used in extended 405 

range dating, since each is more reliable in different settings. This view seems also relevant for the 406 

new developments in Luminescence dating, such as the Infra-Red Radio-Fluorescence (IR-RF) or the 407 

Violet Simulated Luminescence, for which further investigations are required prior to validate their 408 

suitability for dating ancient fluvial archives. It is worth noting that these approaches do not address 409 

uncertainties in estimating dose rates, which remain significant also at older ages.  410 

4. Electron Spin Resonance (ESR) dating in fluvial environments 411 

ESR is a radiation exposure (or palaeodosimetric) dating method based on the evaluation of the 412 

natural radiation dose absorbed by materials over geological times. The first application of ESR as a 413 

geochronologic tool was published by Ikeya (1975) on stalagmites from Japanese caves. Since then, 414 

the method has been used on a wide range of materials including phosphates, carbonates, and 415 

silicates (see review in Ikeya, 1993). The most popular applications in fluvial context are undoubtedly 416 

on fossil teeth and optically bleached quartz grains extracted from sediment, either for targeted dating 417 

of a given site/section (e.g. Falguères et al., 2006; Santonja et al., 2014) or for the establishment of a 418 

comprehensive chronological framework for terrace staircases (e.g. Voinchet et al., 2004; Antoine et 419 

al., 2007; Cordier et al., 2012). As with Luminescence dating, ESR dating is based on the 420 

quantification of charge trapped in the crystalline lattice of a material under the effect of natural 421 



radioactivity. These trapped charges give rise to an ESR signal whose intensity is proportional to the 422 

radiation dose absorbed by the sample over time. The ESR age equation is similar to that used in 423 

luminescence dating and the standard analytical procedure consists in determining the two main 424 

parameters: the equivalent dose (DE) and the dose rate. DE is obtained using ESR spectroscopy, by 425 

artificially aging the samples at increasing doses in order to describe the behaviour of the studied 426 

signal. The dose rate is usually assessed by a combination of in situ and laboratory measurement 427 

using a wide range of different analytical techniques and corrected for the density of the material, its 428 

geometry and water content (see Grün, 1989 and Duval, 2016). 429 

4.1. ESR dating of fossil teeth: on the importance of modelling uranium incorporation into dental 430 

tissues 431 

ESR dating of fossil teeth has been first proposed in the mid-1980s as an alternative to fossil bones 432 

(see an overview by Duval, 2015 and references therein). The main difficulty of this application lies in 433 

the complexity of the system that has to be considered for the dose rate evaluation. A tooth is made 434 

from different dental tissues (dentine, enamel and, sometimes, cement). All have different 435 

characteristics in terms of composition and thickness that contribute to the irradiation of the enamel 436 

layer. Additionally, dental tissues are known to behave as open systems for U-series elements. In 437 

other words, teeth frequently experience delayed U-uptake or U-leaching processes. As a 438 

consequence, it is crucial to model the kinetics of the incorporation of U into each dental tissue in 439 

order to obtain an accurate estimation of the dose rate. The most common, and reliable, method is 440 

using the U-series data collected for each dental tissue in combination with the ESR dose evaluation 441 

(i.e., the so-called combined U-series/ESR dating approach; see Grün et al., 1988 and Grün 2009). 442 

Further detail is found in a recent review by Duval (2015) and Table 4. 443 

4.2. ESR dating of sedimentary quartz grains: the choice of signal to measure 444 

Similar to OSL, ESR dating of sedimentary quartz is based on the study of light-sensitive signals 445 

whose intensity is reset (bleached) under sunlight exposure during sediment transportation. Once the 446 

sediment is buried, and thus sheltered from sunlight, paramagnetic centres are created and the ESR 447 

signal intensity increases as a result of the interaction of natural radioactivity with the quartz sample. 448 

Quartz has several paramagnetic centres associated with crystal defects (for a detailed review, see 449 

Ikeya, 1993; Preusser et al., 2009), but the most widely used since the first dating application by 450 

Yokoyama et al. (1985) are undoubtedly the Titanium (Ti) and the Aluminum (Al) centres. Because Al 451 



is the major trace element found in quartz (Preusser et al., 2009), the ESR signal associated with the 452 

Al centre can be observed in any sample. It also usually presents high intensities (Fig. 6a) and signal-453 

to-noise ratio values, ensuring high precision measurements (Duval, 2012). However, the Al signal 454 

shows relatively slow bleaching kinetics (the signal requires several hundred hours of UV laboratory 455 

irradiation to reach a minimum value, see Fig. 6b), and it cannot be fully reset under sunlight exposure 456 

as there is a residual ESR intensity that cannot be bleached (Fig. 6b; Toyoda et al, 2000). This 457 

residual level should be assessed (usually via bleaching experiments using sunlight simulators) in 458 

order to avoid dose overestimations. In contrast, the Ti centres (Ti-Li and Ti-H mostly in quartz 459 

samples) show much faster bleaching kinetics and no residual (i.e. unbleachable) ESR intensity. 460 

However, measurements are significantly longer and less precise than those of the Al centre given the 461 

very low ESR intensities that are usually measured (Fig. 6a, Duval and Guilarte, 2015). Further detail 462 

about ESR dating of optically bleached quartz grains may be found in the recent reviews by Toyoda 463 

(2015) and Tissoux (2015), while basic information is also given in Table 4. 464 

4.3. Fluvial environment and ESR dating: main specificities 465 

Depending on the material dated, there may be different impacts from the fluvial environment on the 466 

ESR dating results. Unlike in quartz, the ESR signal measured in tooth enamel is not light sensitive 467 

and thus cannot be reset during transportation. However, transport and depositional conditions can 468 

indirectly impact the ESR results, in particular regarding the preservation state of the sample, as they 469 

may fragment and weaken dental tissues, thus favouring post-depositional processes and in particular 470 

U-uptake or leaching. Additionally, a review by Grün (2009) showed that the U-uptake kinetics into 471 

dental tissue is significantly different depending on the sedimentary environment: teeth found in cave 472 

sites most frequently document earlier U-uptake compared with those found in open air sites, which 473 

also show more frequent occurrences of U-leaching. This is most likely due to differences in the 474 

sedimentological context. Cave sites, as closed environments, usually offer more stable geochemical 475 

conditions over time. In contrast, open air sites are frequently found as the result of erosion processes 476 

that may induce modifications of the hydrological environment and cause recent mobilisation of 477 

radioelements impacting the original isotopic signature of the teeth. 478 

Fluvial transport has a direct impact on the ESR signals measured in quartz as it is known to induce  479 

resetting by either exposure to natural sunlight (Toyoda et al., 2000) or mechanical effects (Grün and 480 

Liu, 2011). Similarly to OSL, the degree of bleaching of the ESR signals depends on the length and 481 



conditions of transport (see section 3.2.). In a recent study, Voinchet et al. (2015) studied the impact of 482 

a series of parameters such as the grain size, transport mode and water turbidity to evaluate the most 483 

suitable conditions for optimum bleaching. Based on their results, higher bleaching levels were 484 

achieved for 100-200 µm grains in comparison with other fractions and for fluvial transport under clear 485 

water conditions (see overview in Fig. 2). 486 

4.4. Sampling precautions 487 

When dating sedimentary quartz, sampling precautions are very similar to those for Luminescence 488 

dating (section 3.3), i.e. the choice of a suitable sedimentary setting and suitably thick beds for 489 

simplicity of dose-rate estimation (Fig. 4). Although ESR signals bleach much slower than OSL ones, it 490 

is nevertheless important to minimise the exposure of the raw sediment to the sunlight during 491 

sampling, as in luminescence dating. According to the results shown by Voinchet et al (2015), 492 

sediment showing a non-negligible fraction of medium sands (mostly 100-200 µm) and transported  493 

and deposited in a clear-water fluvial environment should be targeted for sampling, as they potentially 494 

offer the most suitable bleaching conditions.  In addition, in situ measurements of natural radioactivity 495 

should be undertaken (especially if the immediate surrounding sedimentary environment is not 496 

homogeneous, see Fig. 4b), in order to obtain an accurate estimation of the gamma dose rate. 497 

Additional small bags of sediment are also usually collected at the ESR sampling spot for future 498 

laboratory analysis, e.g. for water content evaluation and analysis of radioelement concentration. 499 

When dating teeth, samples have usually already been collected during the archaeo-palaeontological 500 

excavation and are thus chosen from collections. It is important to make sure that exact original 501 

(geographical and stratigraphical) location of the selected tooth is well-known and the corresponding 502 

layer/outcrop/site is still accessible to enable complementary fieldwork sampling and dose rate 503 

measurements. Ideally, in the case of fossil teeth it is recommended to ask the archaeologists and/or 504 

palaeontologists to collect the sediment attached to the tooth during the excavation. This is essential 505 

for a correct evaluation of the beta, and sometimes gamma, dose rate component(s). The apparent 506 

preservation state of the tooth matters as well, as previous studies have shown a strong correlation 507 

between macroscopic cracks in dental tissues and preferential migration of U-series elements (Duval 508 

et al., 2011).  509 

4.5. Current challenges in ESR dating 510 



4.5.1. ESR dating of fossil tooth enamel: improving resolution and removing unstable components of 511 

the ESR signal  512 

In comparison with quartz, ESR dose reconstruction of fossil tooth enamel is more straightforward. 513 

The composition of the ESR signal and its dose response has been extensively studied in recent 514 

decades. The modern development of ESR analyses of enamel fragments now enables the 515 

differentiation of the relative contribution of non-oriented CO2
- radicals (NOCORs) vs. the oriented 516 

ones (CORs) (e.g. Grün et al., 2008). Additionally, Joannes-Boyau and Grün (2011) showed that 517 

laboratory gamma irradiation produces additional unstable NOCORs in comparison with natural 518 

irradiation, which may lead to dose underestimation (~30%) if this contribution is not removed. The 519 

authors acknowledge, however, that this value should not be considered as universal and extrapolated 520 

to any samples, as it may depend on many parameters (e.g., age, type, species). In contrast, more 521 

recent investigations indicate that this preferential creation of an unstable component may not be 522 

systematic, being rather sample dependant (Duval and Grün, unpublished data). Consequently, from 523 

these results it seems that each sample should be independently assessed. However, as an additional 524 

complication, it should be mentioned here that most of the dating studies are performed on enamel 525 

powder. One of the major current challenges would thus be to develop an analytical procedure that 526 

enables an easy identification of these unstable NOCORs using enamel powder. In that regard, using 527 

the microwave saturation characteristics of the different groups of CO2
- (Scherbina and Brik, 2000) 528 

may be an avenue worth exploring in the future.  529 

High resolution LA-ICP-MS U-series analyses has recently demonstrated the spatial heterogeneity of 530 

the distribution of U-series elements in dental tissues (Duval et al., 2011). This analytical tool has 531 

rapidly become essential for studying U-mobility and may be particularly useful to identify domains in 532 

the teeth that are suitable for ESR dating. However, the use of this technique raises new issues. There 533 

is a difference in resolution when comparing ESR and the ICP-MS methods. Currently, in situ laser 534 

ablation ICP-MS U-series analysis can be performed with a resolution of a few tens of µm. In contrast, 535 

the spatial variation of the ESR signal intensity in tooth enamel has rarely been studied, and ESR bulk 536 

analyses are usually performed on several hundreds of mg of enamel powder. This difference in 537 

resolution may become a non-negligible source of uncertainty in ESR dating, especially for old 538 

samples for which the dose rate associated with dental tissues is the major factor in the total dose rate 539 

calculation. Future challenges will thus consist of developing new approaches to reduce the amount of 540 

sample required for ESR analyses and obtain spatially resolved data. This is now possible through the 541 



use of high sensitivity X-band resonators and with the development of a specific analytical procedure 542 

for quantitative measurements in Q-band spectroscopy based on only a few mg of enamel (Guilarte et 543 

al., 2016). Additionnally, although it is for the moment extremely complicated to integrate spatially 544 

resolved ESR and U-series data for age calculations, the recent development of DosiVox (software for 545 

dosimetry simulations) opens new possibilities for modelling dose rates from complex geometries and 546 

heterogeneous spatial distributions of radioelements (Martin et al., 2015). 547 

4.5.2. Avoiding and minimizing the effect of scatter and incomplete bleaching in ESR dating of 548 

sedimentary quartz 549 

One of the main difficulties in ESR dating of quartz is to achieve repeatable measurements ensuring 550 

reproducible DE results. This reproducibility is lower than that obtained with tooth enamel, not only 551 

because measurements close to liquid N2 temperature require a very stable experimental setup, but 552 

also because of the heterogeneity of the quartz samples and the strong angular dependence of the 553 

signal within the cavity. Extensive work has been performed recently to optimise the conditions of 554 

measurements for both the Al and Ti centres (e.g. Duval and Guilarte, 2012, 2015; Duval, 2012).  555 

In parallel to this work, another major challenge is in reducing the uncertainty on the final DE value. As 556 

noted by Toyoda (2015), some approaches developed in OSL dating are definitely worth exploring in 557 

ESR dating. Perhaps the most obvious is the use of the regenerative dose protocol instead of the 558 

additive dose protocol that is routinely used in ESR. This protocol would not only provide more precise 559 

DE results but also significantly shorten the analytical time (i.e. fewer aliquots to be measured and 560 

lower irradiation dose values). However, several previous attempts employing optical bleaching 561 

resetting have shown somewhat contrasting results regarding the presence of sensitivity changes 562 

(Tissoux et al., 2007; Beerten and Stesmans, 2006). Other approaches are less obviously fruitful. For 563 

example, although single grain dating using Q-band ESR spectroscopy has been tested to identify 564 

partial bleaching among a grain population, it is currently too complicated to be applied routinely 565 

(Beerten and Stesman, 2006). 566 

The main challenge, however, is in minimising the uncertainty regarding possible incomplete 567 

bleaching of the signal during sediment transportation. Most dating studies use the Al centre even 568 

though laboratory bleaching experiments indicate that several hundreds of hours of exposure to UV 569 

are required for the ESR signal to decay to a plateau (e.g. Toyoda et al., 2000; see also Fig. 6b). 570 

These values would correspond to several tens of days of sunlight, which understandably leads many 571 



authors to question the possibility of the Al centre actually reaching its residual ESR intensity during 572 

transportation. However, Voinchet et al. (2007) demonstrated that the signal was fully reset (to its 573 

residual level) after only 1 km of transportation in the Creuse river, France. Additionally, at the 574 

Vallparadís site (Spain), Al-ESR ages were found to be in good agreement with the US-ESR ages on 575 

fossil teeth and data from magneto- and bio-stratigraphy (Duval et al., 2015). These two examples 576 

demonstrate that any definitive conclusion derived from laboratory bleaching experiments should be 577 

considered with caution. It is possible that other processes, not yet understood, are involved in the 578 

bleaching of the signal in natural conditions.   579 

As a consequence of the uncertainty that may arise from the bleaching of the Al centre, ESR age 580 

results based on this centre should be considered as maximum possible ages: the true age of the 581 

deposits being either similar or younger. To constrain this uncertainty, a few strategies are available. 582 

The use of modern analogue samples collected from nearby river banks may provide some useful 583 

information regarding resetting of the signal. This approach is, however, based on the assumption that 584 

transportation and bleaching conditions are similar to those in the past, which is not always plausible. 585 

Another approach is to use independent age control to verify the age results (see the example of 586 

Vallparadís, Duval et al., 2015). However, the best option is undoubtedly the Multiple Centres (MC) 587 

approach proposed by Toyoda et al (2000). The authors proposed the systematic measurement of 588 

both the Ti-Li and Al centres in quartz samples in order to check whether they would provide 589 

consistent results (Table 5). If the Al centre yields an age estimate older than that of the Ti centre, this 590 

is interpreted as incomplete bleaching of the Al signal. In this case, the Ti-Li age should be considered 591 

a closer estimate to the burial age of the deposits. Although ESR measurements following the MC 592 

approach are highly time consuming, it has provided promising results (see Rink et al., 2007; Duval et 593 

al., 2015). The use of this MC may soon become a standard requirement in ESR dating of optically 594 

bleached quartz grains. 595 

Lastly, another Ti centre, Ti-H, presents great potential worth investigating for dating purposes. It is 596 

known to bleach much faster and to be more radiosensitive than the Ti-Li (see Fig. 6b; Duval and 597 

Guilarte, 2015), which would make it a good candidate for dating deposits younger than 200 ka. It is, 598 

however, unclear for the moment whether it provides reliable dose estimations. Indeed, the weakness 599 

of the signal intensity makes it very complicated to measure in all samples, resulting in low 600 

measurement precision (Table 5; Duval and Guilarte, 2015).  601 



5. 230Th/U-dating of fluvial deposits 602 

The 230Th/U-dating method is based on the radioactive decay in the natural decay chain of 238U and 603 

was developed in the 1960s (Broecker, 1963; Kaufman and Broecker, 1965). Since then, the precision 604 

and accuracy of the method has progressively increased, primarily due to major technical advances. 605 

Whereas alpha spectrometry was widely used until the 1990s (Goldstein and Stirling, 2003), the use of 606 

thermal ionisation mass spectrometry (TIMS) (Edwards et al., 1987) represented a major advance at 607 

the end of the 1980s. This reduced the time required for an analysis from a week to several hours, 608 

decreased sample size from 10-100 g to 0.1-1 g and, most importantly, improved precision from 609 

percent to permil levels and extending the dating range from 350 to 600 ka (Goldstein and Stirling, 610 

2003). In the last two decades, the application of multi-collector inductively coupled plasma mass 611 

spectrometry (MC-ICPMS) has led to further substantial improvements (Goldstein and Stirling, 2003; 612 

Scholz and Hoffmann, 2008). The considerably higher ionisation and transfer efficiency for U and Th 613 

isotopes of the MC-ICPMS technique leads to higher count rates, in turn resulting in more precise and 614 

accurate 230Th/U-ages. Furthermore, measurement times (~10-20 minutes) and sample sizes are 615 

again substantially lower than for TIMS. In addition to the technical advances, the half-lives of both 616 

230Th and 234U have been re-determined (Cheng et al., 2000, 2013), also leading to more precise 617 

230Th/U-ages. During the last decade, procedures for laser-ablation (LA) MC-ICPMS 230Th/U-dating of 618 

carbonates have been developed (e.g. Eggins et al., 2005; Mertz-Kraus et al., 2010). This technique 619 

has very large potential since it offers in situ dating at extremely high spatial resolution (in the range of 620 

10-100 µm), requires no sample preparation and is extremely fast and, thus, enables very high sample 621 

throughput. In return, the analytical precision is much lower than for conventional 230Th/U-ages (a few 622 

percent compared to epsilon levels).  623 

In undisturbed natural materials with an age of several million years, the activity of the parent (i.e. 624 

238U) and the daughter isotopes (i.e. 234U and 230Th, respectively) is in secular equilibrium. This state of 625 

equilibrium, however, can be disturbed by several natural processes, which is the basic principle of all 626 

U-series disequilibrium dating methods. In aqueous environments, the major reason for disequilibrium 627 

between U and Th is the different geochemical behaviour of the two elements. Whereas U is soluble, 628 

Th is insoluble in natural waters and, thus, mainly transported adsorbed onto particles. As a 629 

consequence, groundwater, rivers, lakes and seawater contain significant amounts of dissolved U, but 630 

essentially no Th. During formation of secondary carbonates, U is thus incorporated, whereas Th is 631 

not. Consequently, secular equilibrium is disturbed, and the initial activity of 230Th is zero. If the decay 632 



system remains closed after deposition (i.e. no U and Th isotopes are lost or added subsequently), the 633 

activity ratios of (234U/238U) and (230Th/238U) return to the state of secular equilibrium (e.g. Bourdon et 634 

al., 2003, activity ratios are indicated in parentheses in the following). The temporal evolution of the 635 

activity ratios (in particular the increase of 230Th due to the decay of 234U and 238U) allows dating of the 636 

time of carbonate formation (i.e. the timing of the establishment of disequilibrium) and, thus, the age of 637 

the carbonate phase. This is, however, only possible if two basic requirements are fulfilled: (i) no 638 

presence of initial 230Th and (ii) the system remained closed after deposition. If one of these 639 

assumptions is violated, the resulting 230Th/U-age may be substantially inaccurate.  640 

230Th/U-dating can, in principle, be applied to all materials whose formation is accompanied by a 641 

constrained disequilibrium between U and Th. The materials most widely dated by the 230Th/U-method 642 

are fossil reef corals and speleothems (Scholz and Hoffmann, 2008; Edwards et al., 2003), which can, 643 

in general, be accurately and precisely dated up to an age of 600 ka. However, with increasing 644 

sensitivity of both LA and MC-ICPMS systems, increasing precision may be achieved enabling high-645 

precision in situ 230Th/U-dating (i.e., without prior sample preparation) at very high spatial resolution. 646 

This may be particularly useful for impure carbonates found in fluvial deposits in order to analyse the 647 

most pristine fractions of a dirty sample. Examples of successful dating of inclusions in fluvial deposits 648 

by the 230Th/U-method (Fig. 2) include pedogenic carbonates and calcretes deposited in alluvial fans 649 

and river terraces (e.g. Candy et al., 2004; Kelly et al., 2000; Ludwig and Paces, 2002; Sharp et al., 650 

2003) as well as tufa and travertine (Schulte et al., 2008; Candy and Schreve, 2007).  All these 651 

deposits have in common that they form subsequently to the deposition of fluvial sediments, such as 652 

fans and terraces (Fig. 2). Thus, they can only provide a minimum age for the fluvial deposits with 653 

which they are associated (Blisniuk et al., 2012). Carbonates that have been mobilised subsequent to 654 

deposition (e.g. flood events or washed in from slopes, Fig. 2) are not expected to provide reliable 655 

230Th/U-ages because they are (i) most likely affected by post-depositional diagenesis and (ii) difficult 656 

to relate to a depositional context (Fig. 2). Extensive reviews of the 230Th/U-dating methodology can be 657 

found in the classic books by Ivanovich and Harmon (1992) and Bourdon et al. (2003). 658 

5.1. 230Th/U-dating of secondary carbonates in fluvial archives: main issues 659 

In general, carbonates deposited in fluvial and lacustrine environments are difficult to date by the 660 

230Th/U-method. In many cases, samples of fluvial and lacustrine deposits contain very large amounts 661 

of detrital Th, which represents a violation of one of the basic requirements of the dating method. 662 



Since Th is mainly transported adsorbed onto particles, it is generally associated with relatively fast 663 

flowing water, which has the potential to transport these particles. In particular, carbonates associated 664 

with alluvial fans thus often contain substantial amounts of detrital Th (Fig. 2). However, pedogenic 665 

carbonates may also contain high amounts of detrital Th, which is mobilised from the overlying 666 

horizons (Fig. 2). These materials are thus often referred to as impure carbonates or dirty calcites 667 

(e.g., Kaufman, 1993). Initial Th is often associated with a silicate or clay fraction. Whereas the 668 

preparation of pure carbonate samples is relatively straightforward (e.g. Yang et al., 2015), the 669 

preparation of impure carbonates may be more elaborate due to the presence of an insoluble residue. 670 

Various approaches to deal with insoluble residues have been proposed (see section 5.2.2). Initial 671 

(also often referred to as detrital) 230Th is generally accompanied by 232Th, which is the most abundant 672 

naturally occurring isotope of Th. 232Th does not occur in the decay chain of 238U and is, in contrast to 673 

230Th, not produced by the decay of 234U and 238U. Elevated content of 232Th is clear evidence for the 674 

presence of initial 230Th, and its concentration even provides a measure for the degree of 675 

contamination. For (230Th/232Th) activity ratios <20, a correction for detrital contamination is definitely 676 

required (Schwarcz, 1989). Other studies have suggested even higher thresholds for (230Th/232Th) 677 

necessitating a correction for detrital contamination (Richards and Dorale, 2003). Potential correction 678 

techniques that have been shown to be successful for fluvial deposits are discussed in sections 5.2.1. 679 

and 5.2.2. In addition, post-depositional open-system behaviour is not uncommon for secondary 680 

carbonates deposited in fluvial environments, which is even more complicated to detect and account 681 

for (see 5.2.3.). For marine samples, such as corals, open system behaviour can be detected by 682 

comparing the initial (234U/238U) activity ratio of the sample with the (234U/238U) activity ratio of modern 683 

seawater (e.g. Edwards et al., 2003). In terrestrial environments, this is not possible due to the highly 684 

variable (234U/238U) activity ratio in river, lake and groundwater. Thus, successful 230Th/U-dating of 685 

fluvial carbonates has been restricted to a relatively small number of case studies, which are 686 

characterised by the high U content (238U>1 µg/g) of the dated material.  687 

5.2. Approaches developed to date secondary carbonates by 230Th/U  688 

Two general correction methods to account for detrital Th have been developed: a priori estimation of 689 

the (230Th/232Th) activity ratio of the detrital phase and isochron techniques. In rare cases, secondary 690 

carbonates associated with fluvial deposits, such as tufa and travertine, may be very clean, and a 691 

correction for initial 230Th may not be necessary. For instance, Schulte et al. (2008) established a 692 

chronology for the fluvial terrace sequence from the River Aguas basin, Iberian Peninsula, by 230Th/U-693 



dating of travertine. The (230Th/232Th) activity of some of their samples is larger than 20, and a 694 

correction for initial 230Th is not required. Candy and Schreve (2007) obtained 230Th/U-ages on fluvial 695 

and colluvial tufa deposits from southern England with sufficient precision to correlate discrete periods 696 

of temperate climate with individual warm sub-stages during MIS 7. Although the U content of their 697 

samples is relatively low (ca. 0.1 µg/g), the (230Th/232Th) activity of the majority of samples is >20. 698 

5.2.1. A priori estimation of the (230Th/232Th) activity ratio of the detrital phase 699 

The average 232Th/238U weight ratio of the upper continental crust is ~3.8 (Wedepohl, 1995). Assuming 700 

secular equilibrium between 230Th, 234U and 238U for the detrital component, the (230Th/232Th) activity 701 

ratio of the initial Th is ~0.9 (Hellstrom, 2006). Based on the measured content of 232Th, the amount of 702 

initial (detrital) 230Th can thus be estimated and subtracted from the measured concentration of 230Th. 703 

This approach is often referred to as a priori estimation of the detrital phase and may provide 704 

reasonable ages. However, the initial (230Th/232Th) activity ratio is highly variable and associated with 705 

large uncertainties. Usually, an uncertainty of 50% is assumed (Hellstrom, 2006). Propagation of this 706 

substantial uncertainty to the corrected 230Th/U-age may lead to highly elevated age uncertainties and 707 

even ages with zero significance (Kaufman, 1993; Wenz et al., 2016). Despite these large 708 

uncertainties, a priori estimation of the (230Th/232Th) activity ratio of the detrital phase has been 709 

successfully applied to date fluvial deposits by the 230Th/U-method. For instance, Adamson et al. 710 

(2014) obtained a large number of ages for fluvial deposits in Montenegro by 230Th/U-dating of 711 

carbonate benches and calcite rinds. This study is particularly remarkable because the U content of 712 

the studied samples was relatively low (<1 µg/g). However, many samples also have very low 232Th, 713 

resulting in (230Th/232Th) activity ratios >20. Ludwig and Paces (2002) determined 230Th/U-ages on 714 

pedogenic silica-carbonate clast rinds and matrix laminae from alluvium in Crater Flat, Nevada, 715 

employing the TSD-technique, whereas Sharp et al. (2003) dated pedogenic carbonate clast-rinds 716 

from gravels of glacio-fluvial terraces in the Wind River Basin, Wyoming. The success of both studies 717 

is mainly based on the high U content of the samples. Blisniuk and Sharp (2003) determined the age 718 

of two well-preserved fluvial terrace surfaces in central Tibet by 230Th/U-dating of pedogenic carbonate 719 

rinds on clasts in the terrace deposits. 720 

5.2.2. Isochron methods 721 

The second approach to account for initial or detrital 230Th is the isochron methodology. For isochron 722 

230Th/U-dating of impure carbonates, various procedures for sample preparation have been proposed 723 



(e.g. total sample dissolution (TSD), leachate-leachate (L/L), leachate-residue (L/R), Bischoff and 724 

Fitzpatrick, 1991; Kaufman, 1993; Ku and Liang, 1984; Luo and Ku, 1991; Schwarcz and Latham, 725 

1989). In addition, several statistical methods for the evaluation of the isochron data have been 726 

developed (Ludwig, 2003). In general, the isochron method is more flexible than the a priori approach 727 

and provides more reliable ages with smaller uncertainties (Wenz et al., 2016). However, the 728 

application of the isochron methodology is based on two assumptions: all sub-samples (i) must have 729 

the same age and (ii) should contain different amounts of the same detrital component (i.e. with the 730 

same (234U/238U) and (230Th/238U) ratios). Unfortunately, the latter assumption in particular is not 731 

fulfilled for many impure carbonate samples (Ludwig, 2003; Wenz et al., 2016), again leading to large 732 

age uncertainties and corrected ages with low significance. Isochron techniques have also been 733 

successfully applied for 230Th/U-dating of fluvial deposits. For instance, a stratigraphically consistent 734 

chronology based on isochron 230Th/U-ages determined on pedogenic calcretes has been reported for 735 

alluvial terrace sequences from the Sorbas Basin, south-eastern Spain (Candy et al., 2004, 2005; 736 

Kelly et al., 2000). However, Candy et al. (2005) have shown that dating of mature calcretes is much 737 

more difficult than dating of immature calcretes, as has been revealed by the isochron statistics. 738 

Nevertheless, it may also be possible to determine a reliable age for mature calcretes if a large 739 

number of sub-samples from a single horizon are dated. Other studies aiming to date fluvial deposits 740 

were not successful in accounting for initial 230Th by isochron techniques. For instance, Kock et al. 741 

(2009) attempted 230Th/U-dating of pedogenic carbonate crusts from fluvial gravels of the River Rhine, 742 

and compared them with internally coherent OSL ages. Most of their U-series data scattered widely on 743 

isochron diagrams suggesting multiple components of initial 230Th that are not related to detrital 232Th. 744 

A significant fraction of the initial 230Th may originate from bacterial activity and Th transport on organic 745 

colloids. This suggests that samples in which bacteria could have contributed to carbonate 746 

precipitation should be avoided. 747 

5.2.3. Accounting for open-system behaviour 748 

One option for detecting open-system behaviour of 230Th/U-ages of fluvial deposits is through 749 

comparison with independent ages (e.g. Blisniuk et al., 2012; see section 7). Another option is 750 

consideration of the stratigraphical context of the deposited samples, i.e. whether the determined 751 

(corrected) 230Th/U-ages are in stratigraphical order within a sedimentary sequence. This approach is 752 

currently used to identify ages representing outliers, probably because the applied correction 753 

techniques were not successful or due to post-depositional open-system behaviour. This approach 754 



has been proved to be successful for the aragonitic lacustrine sediments from Lake Lisan, the Last 755 

Glacial precursor of the Dead Sea, which have been extensively studied by 230Th/U-dating (e.g., 756 

Torfstein et al., 2013). These sediments contain high amounts of U (>3 µg/g), and different 757 

approaches have been used to obtain corrected ages, including isochrons (Schramm et al., 2000), a 758 

priori estimates of the detrital (230Th/232Th) activity ratio (Schramm et al., 2000) and an iterative 759 

approach independently evaluating the composition of the detrital component for every set of coeval 760 

samples (Torfstein et al., 2013). Furthermore, several authors recently have suggested algorithms for 761 

speleothems including stratigraphical constraints in order to estimate the (230Th/232Th) activity ratio of 762 

the detrital component (Hellstrom, 2006; Roy-Barman and Pons-Branchu, 2016). These algorithms 763 

may also be very useful for fluvial samples deposited in a clear stratigraphical context. 764 

6. Terrestrial cosmogenic nuclides (TCN) dating of fluvial deposits 765 

The development of the AMS technology in the early 1980s (e.g. Klein et al., 1982), which allowed 766 

measurements of isotopic ratios as low as 10-15 at that time (presently 10-16 has been reached), 767 

represented a decisive milestone, enabling the use of TCN as a dating tool, as proposed by Davis and 768 

Schaeffer (1955). In parallel, a tremendous amount of work has taken place and aimed at 769 

understanding the physical properties and processes involved in the production of the most commonly 770 

used nuclides in the Earth sciences, i.e. 3He, 10Be, 21Ne, 26Al and 36Cl (e.g. Nishiizumi et al., 1986; see 771 

reviews of Gosse and Philips, 2001; Dunai, 2010). A particular emphasis was on the determination 772 

and refinement of their respective production rates according to the different production pathways, 773 

mostly involving fast neutron- (spallation) and muon-induced reactions (Gosse and Philips, 2001). This 774 

is well exemplified by the strongly debated determination of both the production rate of 10Be in quartz 775 

and the half-life of this radionuclide (Gosse and Philips, 2001; Dunai, 2010). Moreover, the use of 776 

these nuclides as geochronometers required integrating the variability of production rates in space and 777 

time, hence the build-up of scaling factors (Dunai, 2010).  778 

Depending on the aim of the study and/or the fluvial or lacustrine environment where it takes place, 779 

numerical ages based on concentration measurements of cosmogenic nuclides can be undertaken 780 

either via surface exposure dating or burial dating (Fig. 2). Both dating approaches are presented in 781 

this section. Note that the material that has to be dated undergoes pre-exposure to cosmic rays during 782 

(i) bedrock exhumation, (ii) temporary storage on hillslopes and (iii) transport and/or temporary storage 783 

in the fluvial system (Fig. 2). This accumulation of cosmogenic nuclides inventories prior to the 784 



depositional event is known as inheritance (Anderson et al., 1996). Whereas surface exposure dating 785 

of depositional landforms is highly sensitive to this process (see 6.1), this inherited component allows 786 

the dating of a burial event (see 6.2). In fluvial settings, surface exposure dating first provided 787 

numerical ages for alluvial fans (Siame et al., 1997; Van der Woerd et al., 1998) and river terraces, 788 

both bedrock strath terraces (Burbank et al., 1996; Leland et al., 1998) and alluvium-mantled terraces 789 

(Anderson et al., 1996, Repka et al., 1997). In lacustrine environments, surface exposure dating of 790 

palaeo-shorelines provides information about former lake-level highstands (Rades et al., 2013). Burial 791 

dating can be applied to in cave-deposited alluvium (Granger et al., 1997) or deeply buried fluvial or 792 

lacustrine sediments (Kong et al., 2009).  793 

6.1. Surface exposure dating 794 

The calculation of exposure ages requires both high-precision AMS measurements of nuclide 795 

concentrations and the determination of the site-specific nuclide production rate. The latter must 796 

integrate the use of specific scaling factors and the potential topographic or self shielding of cosmic 797 

rays at the sampling location (Dunai, 2010). As fluvial sediments or related landforms very often 798 

contain quartz-bearing material, surface exposure ages are usually determined via concentration 799 

measurements of 10Be (Fig. 7a, Dunai, 2010), sometimes used alongside 26Al (e.g. Repka et al., 1997; 800 

Rixhon et al., 2011). However, alternative nuclide species are produced in other minerals, such as 3He 801 

in olivine and pyroxene or 36Cl in calcite (see Gosse & Phillips, 2001; Dunai, 2010), thereby allowing 802 

other lithologies to be dated (e.g. Baynes et al., 2015). The dateable range in surface exposure dating 803 

of fluvial environments varies strongly according to the setting and the employed nuclide(s) (Fig. 1). 804 

The lower age range very much depends on the detection limit of the AMS, hence the production 805 

rates, but late Holocene exposure ages of bedrock strath surfaces were obtained (Leland et al., 1998, 806 

see 6.1.2.). On the other hand, surface exposure dating with 10Be, because of its long half-life (i.e. 807 

~1.36 Ma), permits pre-Quaternary applications under specific conditions without saturation being 808 

reached (Dunai, 2010). 809 

In many instances, surface exposure ages of fluvial depositional surfaces, especially alluvial fans, 810 

were formerly based on concentration data obtained from individual clasts or boulders lying on these 811 

(Fig. 7a, b; e.g. Siame et al., 1997; Van der Woerd et al., 1998). However, Schmidt et al. (2011) 812 

emphasized the need of caution when inferring exposure ages from such TCN concentration data; 813 

diverse geomorphological processes acting on a surface might indeed represent a considerable 814 



source of uncertainty. These encompass inheritance (Fig. 2), post-depositional weathering, erosion or 815 

covering by sediments and even by snow (e.g. Anderson et al., 1996; Rixhon et al., 2011). Whereas 816 

inheritance might lead to an overestimate of the true exposure age, all other processes tend to reduce 817 

the cosmogenic inventory near the dated surfaces and thereby result in age underestimations. An 818 

unequal distribution and/or intensity of these stochastic processes across the surface might result in a 819 

significant spread in apparent exposure ages (Owen et al., 2014). For this reason thorough field 820 

observations and descriptions are an absolute prerequisite for surface exposure sampling (see field 821 

template in Dunai, 2010).  822 

6.1.1. Depth profile dating of depositional surfaces (alluvial fans, alluvium-mantled terraces) 823 

The depth profile sampling technique may overcome some of the uncertainties related to these 824 

geomorphological processes (Anderson et al., 1996). It allows simultaneous computation of exposure 825 

time (i.e. the abandonment time of the landform), the post-depositional denudation rate of the landform 826 

and inheritance (Braucher et al., 2009; Hidy et al., 2010). This approach consists of sampling the 827 

fluvial sediments at regular depth intervals (Fig. 7c), taking advantage of the spallation-dominated 828 

production at or near the surface and the muon-dominated production at greater depth (Braucher et 829 

al., 2009). Given the physical properties of these particles, an exponential decrease of TCN 830 

concentrations along the depth profile is expected and can be modelled by Monte Carlo simulations 831 

(Fig. 7d, see the user-friendly simulator of Hidy et al., 2010). However, because this method is very 832 

sensitive to any post-depositional reworking processes (e.g. cryo- or bioturbation…), one should avoid 833 

sites where such processes have occurred.  834 

The depth profile technique is particularly useful for dating alluvial fans and fill terraces (Fig. 7d, e.g. 835 

Repka et al., 1997; Le Dortz et al., 2011; Rixhon et al., 2011). In contrast to the pioneering studies on 836 

alluvial fans (e.g. Siame et al., 1997), almost all recent works systematically combined surface 837 

concentration data with depth profile data to better constrain the inheritance and the post-depositional 838 

evolution of the landform (e.g. Le Dortz et al., 2011; Schmidt et al., 2011; Owen et al., 2014). Where 839 

the petrographic composition of fan - or terrace - sediments is favourable, it is advisable to perform an 840 

internal control by comparing concentrations of different nuclides. For instance, quartz-bearing and 841 

calcite-bearing materials enable 10Be and 36Cl concentration measurements, respectively (Le Dortz et 842 

al., 2011). As lateral or vertical offsets disrupting fan surfaces represent an excellent 843 

geomorphological marker for crustal deformation, surface exposure ages allow quantifying average 844 



slip rates along main fault lines for the Middle/Late Pleistocene and/or the Holocene (e.g. Siame et al., 845 

1997; Le Dortz et al., 2011). Also, surface exposure dating of fan surfaces may likewise provide 846 

valuable information about climatic forcing on fan formation (e.g. Owen et al., 2014). Depth profile 847 

concentration data of terrace sediments are commonly used to quantify incision rates by sampling 848 

vertically-spaced levels within terrace sequences (e.g. Repka et al., 1997). Alternatively, diachronic 849 

abandonment times of geometrically-correlated terraces along a hydrological network allow inference 850 

of long-term propagation rates of a specific incision wave from the main trunk into its (sub-)tributaries 851 

(Rixhon et al., 2011). 852 

6.1.2. Surface exposure dating of strath terraces 853 

An alternative application of the surface exposure method consists of dating bedrock surfaces of strath 854 

terraces (Fig. 2). This term is used here to describe laterally-carved benches in steep valley flanks, 855 

especially in actively uplifting orogens (e.g. Himalayas), and are often characterized by smooth 856 

polished surfaces or sculpted erosional features (Fig. 7e, Burbank et al., 1996; Leland et al., 1998). 857 

Inheritance usually does not represent a major issue for strath terraces since they are erosional 858 

landforms. Provided that the bedrock surface is still pristine, one can assume insignificant weathering 859 

or erosion after strath abandonment. If the strath was not covered by temporary alluvium or landslide 860 

deposits subsequent to terrace abandonment (see Leland et al., 1998), the calculation of the exposure 861 

time is straightforward (Fig. 7f, g). To check the representativeness of bedrock samples and to take 862 

concentration variability into account, we recommend the nested sampling strategy of Reusser et al. 863 

(2006). The thin alluvial cover can also be sampled if it is present (e.g. Reusser et al., 2006). Surface 864 

exposure dating of strath terraces in diverse gorge settings highlighted, for instance, (i) differential 865 

rock uplift related to major thrust activity in active orogens (Burbank et al., 1996; Leland et al., 1998), 866 

(ii) regional, climatically-driven incision of rivers along a passive margin (Fig. 7f, g, Reusser et al., 867 

2006) or (iii) the impact of extreme flood events for canyon formation related to significant knickpoint 868 

retreat (Baynes et al., 2015).  869 

6.2 Burial dating 870 

In contrast to surface exposure dating, which relies on continuous accumulation of TCN, burial dating 871 

is based on the differential decay of at least two nuclides, where at least one of them is a radionuclide 872 

– for full details, see Granger and Muzikar (2001) and Granger (2014). The nuclide pair 26Al/10Be is 873 

frequently employed because they are both produced in quartz and their production ratio is 874 



fundamentally independent from latitude and altitude and varies only slightly with depth (Dunai, 2010; 875 

Granger, 2014). In the case of the pair 26Al and 10Be, burial dating is based on a two step 876 

exposure/shielding episode of any quartz-bearing material. First, the latter accumulates nuclide 877 

inventories during exhumation of bedrock and transport/storage on hillslopes and in the drainage 878 

network (Fig. 2), i.e. the inherited component. Whilst the amount of both nuclides in any given clast or 879 

grain is impossible to predict due to stochastic individual exposure history, 10Be and 26Al 880 

concentrations are related as they are produced in the same material over the same time period, 881 

resulting in a 26Al/10Be surface concentration ratio of ~6.75:1 (Dunai, 2010; Granger, 2014). Second, 882 

the quartz-bearing material is rapidly buried (see section 6.2.1.), implying a cessation of production 883 

(Fig. 2). Exploiting the differential radioactive decays of both nuclides, the preburial ratio decreases 884 

with increasing burial duration according to the corresponding half-lives of each nuclide (Dunai, 2010). 885 

The time range of application of burial dating extends into the Pliocene (~up to 5 Ma; Fig. 1) but the 886 

current analytical precision of 26Al measurements in AMS implies uncertainties of (at least) ~60 to 100 887 

ka (Dunai, 2010; Granger, 2014). 888 

6.2.1. Complete and fast burial: dating of in cave-deposited alluvium  889 

Fast and complete burial of sediments requires two basic assumptions (Granger and Muzikar, 2001). 890 

First, the time span over which incomplete shielding occurs is much shorter than the subsequent burial 891 

duration. Second, shielded sediments are buried sufficiently deeply, i.e. in practice ≥30 m, implying an 892 

insignificant production through muons at depth. Given that these prerequisites are frequently met for 893 

in-cave deposited alluvium (Fig. 2), the sampling of these sediments is one of the most straightforward 894 

applications of burial dating (Dunai, 2010). River sediments washed into abandoned phreatic tubes in 895 

limestone valley walls characterize the last time the passage was at the local water table (Fig. 8a, 896 

Anthony and Granger, 2007). Alluvium-filled multi-level cave systems thus mimic alluvium-mantled 897 

terrace staircases and, as such, also record the regional incision history of river systems (Fig. 8b, 898 

Anthony and Granger, 2007). The selection of suitable sampling sites should ensure that abandoned 899 

and alluvium-filled phreatic tubes were not contaminated by any reworked material from an older (or 900 

younger) depositional episode (Dunai, 2010). The solution of the complete and fast burial dating 901 

equations is graphically expressed on the so-called erosion-burial diagram, where the 26Al/10Be ratio is 902 

plotted against 10Be concentrations (Fig. 8c). This approach has provided valuable new insights into 903 

long-term incision rates in diverse tectonically-active (Fig. 8b, e.g. Stock et al., 2004) and moderately-904 



uplifted (e.g. Granger et al., 1997; Anthony and Ganger, 2007) settings, or in river catchments marked 905 

by enhanced glacial deepening (Haüselmann et al., 2007). 906 

6.2.2. Overcoming incomplete shielding: isochron burial dating of fill terraces  907 

The ≥30 m overburden thickness as a prerequisite for a complete shielding is unfortunately not often 908 

met in cases of river terraces, even in thick fill terraces (Fig. 8d). In these instances, incomplete 909 

shielding of the fluvial sediment to the cosmic rays may imply significant postburial production through 910 

deeply-penetrating muons (Granger and Muzikar, 2001). As postburial production is very difficult to 911 

constrain, it may become a considerable issue to produce reliable burial ages. This problem was 912 

overcome by the isochron burial dating method (Balco and Rovey, 2008), which involves the sampling 913 

of several pebbles from the same stratigraphical layer at the base of the river terrace (Erlanger et al., 914 

2012; Darling et al., 2013). It relies on the fact that these clasts are likely to have originated from 915 

different source areas in the catchment (Erlanger et al., 2012). As the latter is subject to variable 916 

production and/or surface erosion rates, and clasts have variable transport and/or storage time within 917 

the fluvial system, they have distinct pre-burial histories resulting in different 10Be and 26Al inherited 918 

concentrations. Sampling the same stratigraphical layer implies an identical postburial production for 919 

each of them; this parameter can thus be treated as a constant among samples (Erlanger et al., 920 

2012). On the graphical representation of isochron burial dating (26Al concentration plotted against 921 

10Be concentration), the burial age is calculated from the slope of the regression line (Fig. 8e). Used 922 

on a well-preserved terrace flight in South Africa (Sundays River), this approach yielded valuable 923 

terrace ages for inferring Late Cenozoic incision rates (Erlanger et al., 2012). 924 

6.3. Future potential of TCN dating 925 

In addition to the commonly employed TCN (3He, 10Be, 21Ne, 26Al and 36Cl), the use of further 926 

radionuclides may extend the application time span of TCN. On the one hand, the long-lived 53Mn 927 

nuclide, given its half-life of 3.7±0.4 Ma, has the potential to unravel exposure histories older than 10 928 

Ma in iron-bearing materials, although it requires AMS technologies with higher energies than those 929 

presently attained in order to reduce the analytical uncertainty (Schäfer et al., 2006). On the other 930 

hand, in situ-produced 14C, with its short half-life, is able to reveal short-term sediment storage time 931 

within large floodplains (Hippe et al., 2012). These values can be compared with long-term estimates 932 

of sediment production when they are used in combination with 10Be and 26Al (Hippe et al., 2012). 933 

Also, coupling 21Ne concentrations with the nuclide pair 10Be and 26Al, all measured in the same 934 



quartz-bearing material, improves both the accuracy and the time range of 26Al/10Be burial dating 935 

(Balco and Shuster, 2009).  936 

7. Application of multiple numerical dating methods to single fluvial sequences 937 

In this contribution, we have focused on the major recent developments of five numerical dating 938 

techniques and showed how these have enabled new dating applications in diverse fluvial settings at 939 

different time scales. However, two main recommendations must be borne in mind. First, there is no 940 

ideal numerical dating method that can provide accurate age results on any kind of sample and in any 941 

context. The use of a dating method, even the most established one such as 14C, is limited by a range 942 

of intrinsic constraints and based on some implicit assumptions. Because the latter are rarely openly 943 

stated, expectations regarding numerical dating methods from non-geochronologists are sometimes 944 

unreasonable. Setting more realistic expectations from non-specialists is a key aim of this paper. 945 

Second, each method presented here, when applied to fluvial archives or landforms, may encounter 946 

specific methodological issues. This, in turn, may bias the “true” age of the event that has to be dated: 947 

for instance, age overestimation of a fluvial depositional event may be caused by the reworking of 948 

organic material (14C), incomplete bleaching of the quartz dosimeter (OSL and ESR), inaccurate 949 

estimation of the initial (230Th/232Th) activity ratio (230Th/U) or inherited nuclide concentrations (TCN). 950 

To overcome some of these limitations, we therefore strongly recommend applying three different 951 

approaches. Each of these is exemplified by case studies, including a discussion how the combination 952 

of these dating methods may strengthen the chronological framework of fluvial archives. First, 953 

provided that the petrographic composition of the fluvial sediments is favourable, some of these dating 954 

methods may allow an internal cross-check. For instance, surface exposure ages are strengthened 955 

when 10Be concentrations are measured alongside 36Cl concentrations from quartz-bearing and 956 

calcite-bearing material, respectively (e.g. Le Dortz et al., 2011). The same holds for luminescence 957 

dating: Colarossi et al. (2015) comparatively analysed OSL (quartz) and post-IR IRSL (feldspar) 958 

signals from identical samples collected in Quaternary river sediments (South Africa) to test whether 959 

the second dosimeter can reliably date partially bleached sediments. Notwithstanding the statement 960 

that the post-IR IRSL225 signal was the most adequate because of the fastest bleaching kinetics, age 961 

convergence and divergence were both observed for younger (<20 ka) and older (>50 ka) samples, 962 

respectively (Colarossi et al., 2015 ). Further research is however required to understand the cause(s) 963 

of this discrepancy for older fluvial material. 964 



Second, as stated by Brauer et al. (2014), it is of major importance to produce independent 965 

chronologies obtained from different dating methods, provided that the nature and the characteristics 966 

of the fluvial deposits allows it (e.g. Table 1). A common combination involves radiocarbon and OSL 967 

dating to yield robust chronologies for Late Pleistocene/Holocene fluvial sequences (e.g. de Moor et 968 

al., 2008). Moreover, age discrepancies between these two dating methods may give further insights 969 

into methodological issues. For instance, based on directly comparable paired OSL and 14C ages of 970 

Late Pleistocene terrace deposits from Eastern England, Briant and Bateman (2009) showed that 971 

ages inferred from both methods are either consistent (<29-35 ka) or divergent (>29-35 ka) (Fig. 9a). 972 

The systematic age underestimation of 14C dating beyond this limit is attributed to secondary 973 

contamination of older organic material by low levels of modern carbon (Fig. 3); it was thus suggested 974 

that conventionally pre-treated 14C ages ≥29 -35 ka should be treated with great caution (Briant and 975 

Bateman, 2009). Likewise, some of the case studies mentioned in this contribution take advantage of 976 

rarely used combinations between OSL, ESR, 230Th/U and TCN dating (Chaussé et al., 2004; Stock et 977 

al., 2005; Kock et al., 2009; Le Dortz et al., 2011; Blisniuk et al. 2012). For instance, Blisniuk et al. 978 

(2012) applied a combination of 10Be exposure dating with 230Th/U-dating to constrain the deposition of 979 

mid-Holocene to late Pleistocene alluvial fans (California). Three sampling strategies were 980 

implemented for the first method: top surface of individual large boulders (Fig. 7a), amalgamate of 981 

surface clasts and depth profile (Fig. 7c). The second method involved the sampling of post-982 

depositional pedogenic carbonate from sub-surface clast-coatings. 230Th/U ages (minimum ages) are 983 

convergent or slightly younger than TCN ages (maximum ages if not corrected for inheritance and 984 

assuming zero denudation), thereby proving the usefulness of this combined approach in obtaining 985 

reliable depositional ages of fan deposits (Fig. 9b). Furthermore, the computing of 10Be depth profile 986 

ages of Late Pleistocene alluvium was made easier by the valuable minimum age information inferred 987 

from 230Th/U dating (Fig. 9b). 988 

Third, as well as the parallel use of two or more independent methods from the same fluvial 989 

sequences, a few exploratory studies have attempted to merge the dating principles of distinct 990 

methods. For instance, Guralnik et al. (2011) developed an innovative approach using a mathematical 991 

framework for consistently incorporating 10Be concentration data along a depth profile with OSL ages 992 

from a single alluvial section (Fig. 9c, d). This model is based on three parameters and solves an 993 

integrated, co-dependent and self-consistent set of equations and assumes fluvial aggradation at a 994 

constant rate, with uniform cosmogenic inheritance, followed by terrace abandonment and subsequent 995 



preservation and exposure of its surface (Fig. 9c, d). This scenario of terrace evolution may be 996 

validated or rejected by comparing model depth concentration data and model OSL ages to real 997 

observations (Guralnik et al., 2011).  998 

As a conclusion, establishing reliable chronologies for Quaternary fluvial sequences has strongly 999 

benefited from such applications of multiple dating methods. We finally recommend combining age 1000 

results of numerical methods with chronological information obtained from relative dating methods. 1001 

This is particularly well exemplified by the study of Antoine et al. (2007), synthesizing age results in 1002 

the Somme valley (northern France), where diverse numerical (14C, TL, IRSL, ESR, 230Th/U) and 1003 

relative (palaeomagnetism, mammalian biostratigraphy and amino-acid racemization) methods were 1004 

implemented. In addition, control for ESR dating was internally provided by cross-checking results of 1005 

optically bleached quartz grains with U-series/ESR dating of tooth enamel. This multi-dating approach 1006 

enabled Antoine et al. (2007) to build a coherent and robust chronostratigraphical interpretation of the 1007 

terrace sequence of the Somme valley for the last 1 Ma.  1008 
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numerical dating methods detailed in the text. 1515 
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Table 2. Sampling and laboratory techniques to improve accuracy in radiocarbon dating fluvial 1521 

deposits. AMS = accelerator mass spectrometry. 1522 

Issue Sampling/laboratory solution 
1) Dating suitable material 
Age difference between 14C 
dated sediment deposit and 
the deposit / event for 
which an age is required 

Select samples for dating according to sedimentary context 
and, where possible, from close to boundaries between 
sedimentary units (c.f. ‘change after’ dates (Macklin et al., 
2010).  

Danger of reworking of 
fossil material either whole 
or as organic detritus (e.g. 
Rogerson et al., 1992) 

Date only the identifiable fraction of the deposit – e.g. 
thoroughly cleaned specific plant macrofossils, shells or 
bones (e.g. Turney et al., 2000). This is only possible 
because of AMS techniques which allow dating of small 
samples. Danger of field 

contamination by modern 
organic detritus 
2) Freshwater reservoir effect 
Danger of carbon uptake 
from carbonate rich water 
rich in ‘old’ carbon 

Date only macrofossils from terrestrial species which do not 
photosynthesise under water (e.g. Carex, Scirpus). 

3) Pretreatments to remove contaminants 
Danger of secondary 
carbonate from post-
depositional groundwater 
infiltration 

Dilute HCl pre-treatment (first step of the mild ABA below). 

Danger of humic acid 
infiltration from higher in the 
profile – especially if 
overlain by peat 

For younger samples (< ~25 14C yr BP): mild acid-base-acid 
(ABA) washes as standard pretreatment 
For older samples, other pretreatments are recommended 
to remove more contamination: 
• Ultrafiltration on bone (e.g. Higham et al., 2006) 
• ABOx-SC (acid, base, wet oxidation - stepped 

combustion) on charcoal (Bird et al., 1999) 
• No clear favoured protocols as yet for seeds or shells 

4) General considerations 
Sampling and laboratory 
preparation. 

• Ensure laboratory space and all equipment being used 
for preparation has never previously come into contact 
with radioactive elements (e.g. from biological 
researchers using 14C as a tracer element – Zermeno et 
al., 2004). 

• Avoid organic packaging such as paper 
• Process and store sample in deionised water only 
• Clean working conditions, avoiding contact of samples 

or equipment with paper where possible 
• Powderless laboratory gloves 
• Visual checks for contamination 
• Dry samples soon after identification to prevent fungal 

growth during storage 
• Submit as large a sample size as possible – preferably 

>1.4 mg carbon content, i.e. >5 mg dry weight (Brock et 
al., 2010) 
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Table 3. A brief overview of the OSL dating method applied to quartz and feldspar grains extracted 1525 

from sediment.  1526 

 Quartz  (SAR) Quartz (TT-OSL) Feldspar (IRSL) Feldspar (pIR-IRSL) 
Upper dating 
range 

Present-day 

Lower dating 
range 

200-300 Gy – 
i.e. c. 150 ka + 
(depending on 
dose rate) 

c. 950 ka Unclear due to 
anomalous fading – 
c. 300 ka? 

c. 950 ka 

Main strength of 
the application 

Can date fluvial sediments directly. 
Can date beyond the C-14 dating time range. 
TT-OSL and pIR-IRSL can extend back to c. 1 Ma 

Standard 
precision 

Standard errors are usually ~10% (5-15%) 

 1527 

 1528 

 1529 

Table 4. A brief overview of the ESR dating method applied to fossil teeth and optically bleached 1530 

quartz grains extracted from sediment. Further details regarding the dating time range of each 1531 

application may be found in Duval (2016) and references therein. 1532 

 Fossil tooth enamel  Optically bleached quartz grains 
extracted from sediment 

Dated event  Burial of the fossil tooth (usually 
assumed to happen shortly after the 
death of the animal). 

Last exposure of the sediment to 
sunlight 

Main specificity of the 
application 

Dental tissues are open-systems for 
U:  U-uptake needs to be modeled 
(combined U-Series/ESR dating 
approach). 

Light-sensitive ESR signals (same 
basic principles as OSL dating). 
Presence of a residual (non-
bleachable) ESR intensity for the Al 
centre. 

Upper dating range Present-day 
 

~10 ka  
 

Lower dating range Early Pleistocene Miocene (Al-center) 
Optimum dating range 40-800 ka 200 ka-2 Ma 
Main strength of the 
application 

Direct dating of hominin and animal 
fossil remains  beyond the C-14 and 
U-series dating time range. 

May date beyond the OSL dating 
time range. 
 

Standard precision Standard errors are usually ~10% (5-
15%) 

Standard errors are usually ~10% 
(5-15%) 
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Table 5. Summary of the main features usually observed for the three paramagnetic centres Al, Ti-Li 1537 

and Ti-H. Relative characterisation is provided: (+++)=high, (++)=medium, (+)=low. Further details and 1538 

additional references may be found in the text. 1539 

 Al Centre  Ti-Li Centre  Ti-H Centre 

Signal-to-Noise ratio 
(S/N)  

+++ ++ + 

Precision of the 
measurements 

+++ ++ + 

Dose response curve No apparent 
saturation at high 
doses (>60 kGy) 

Non-monotonic 
behaviour 
(maximum intensity 
~6-10 kGy) 

Non-monotonic 
behaviour (maximum 
intensity ~3-8 kGy) 

Bleaching kinetics 
(speed) 

+ ++ +++ 

Residual ESR intensity 
(unbleachable 
component) 

Yes No No 
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Figure captions 1542 

Fig. 1. Dateable ranges of the five numerical dating methods detailed in this contribution. Black 1543 

rectangles refer to time spans within which the methods usually provide reliable results; dashed 1544 

rectangles represent challenging time periods. Luminescence methods are divided into two rows: the 1545 

first row represents the routinely applied techniques (OSL: optically stimulated; IRSL: infrared 1546 

stimulated, including pIRIR) and the second row the techniques currently under development (TT: 1547 

thermally transferred; RF: radiofluorescence). ESR dating on quartz and U-series/ESR dating of tooth 1548 

enamel as well as surface exposure dating and burial dating with terrestrial cosmogenic nuclides 1549 

(TCN) are also divided because of the different dating principles.  1550 

 1551 



Fig. 2. Sketch representing the dateable deposits/landforms and the pathways of dateable material for 1552 

14C, OSL/IRSL, ESR, 230Th/U and TCN dating in both braided and meandering fluvial systems. 1553 

Transport pathways and temporary storages of both inorganic (gravel, sand, silt) and organic (bone, 1554 

charcoal, opercula, seed, shell and tooth) materials on hillslopes and in the fluvial system are also 1555 

represented. 1556 

 1557 

 1558 

Fig. 3. The impact of modern contamination (0.25–2% by weight) on measured 14C ages (thin lines) 1559 

compared to the 1:1 or uncontaminated line (thickest line). After Pigati et al. (2007) 1560 

 1561 



Fig. 4. a) A good sampling location for Luminescence dating at Stanswood Bay, Hampshire, England 1562 

(Briant et al., 2006). The thickest sand bed at the base is Mesozoic in age, but samples were taken 1563 

from thick sand beds above the gravel channel (as shown and above the photo out of view). b) Less 1564 

optimal sampling location for Luminescence dating at Barton on Sea, Hampshire, England (Briant et 1565 

al., 2006). Field gamma spectrometry was undertaken to mitigate the complex dose rate effect of the 1566 

thinner sand lenses. 1567 

 1568 

 1569 

Fig. 5. Comparison of two common methods of plotting data (82 aliquots of aeolian quartz). The radial 1570 

plot on the right is able to show both precision and equivalent dose on the same plot. This is not 1571 

possible with the histogram on the left, nor with commonly used probability density plots. Figures 1 1572 

and 2 of Galbraith (2010). 1573 
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Fig. 6. a) Examples of ESR spectra of Al and Ti centres measured in quartz. b) Decay of the ESR 1575 

intensity of the different centres Al, Ti-Li and Ti-H under UV exposure. This laboratory bleaching 1576 

experiment was performed with a SOL2 sunlight simulator (Dr Hönle) on a quartz sample from the 1577 

Morée-Villeprovert locality, France.  1578 

 1579 

 1580 

 1581 

Fig. 7. Surface exposure dating: application of distinct sampling strategies to different fluvial archives 1582 

or landforms (left), exemplified by dating results (right). a) Sandstone boulder lying at the surface of an 1583 

alluvial fan, sampled for 10Be concentration measurement (Escondida creek, Andean Precordillera, 1584 

Argentina). After Schmidt et al. (2011); b) Mean surface exposure ages (bold numbers), calculated 1585 

from 10Be and 26Al concentration measurements in individual clasts samples, for three fan terraces 1586 

displaced by Holocene strike-slip faulting activity (NE Tibet). The young age cluster on T1 is attributed 1587 

to the occurrence of a recent flash flood (light arrow) whereas the four samples from T1, T2 and T3 1588 

with much older apparent ages (dark arrows) are supposed to have been reworked from older 1589 

deposits but may also have a higher inherited content. After Van der Woerd et al.(1998); c) Sketch of 1590 

TCN concentrations along a depth profile (bold black curve) in an alluvial sequence deposited in a 1591 



single event, highlighting a concentration decrease with depth. Red curves represent supposed 1592 

frequency distribution of nuclide concentrations of individual clasts, illustrating the need to 1593 

amalgamate tens of clasts. Modified after Ivy-Ochs and Kober (2008); d) measured 10Be 1594 

concentrations with 1σ error bars along a ~4.5 m-deep profile in terrace sediments (Ourthe river, 1595 

Ardenne massif, Belgium) and modelled curves based on 10 or 9 samples (bold and dashed curves, 1596 

respectively). Modified after Rixhon et al. (2011); e) two distinct levels of fluvially-carved strath 1597 

terraces; both bedrock surfaces were sampled for 10Be concentration measurements (Susquehanna 1598 

river, Appalachian mountains, USA). After Reusser et al. (2004); f) Sketch summarizing the Late 1599 

Pleistocene incision in the Susquehanna river based on 10Be concentrations of distinct strath terraces 1600 

(with a minimum age for the upper, strongly eroded surface); g) Normalized cumulative probability 1601 

curves based on the sample numbers of fig. f for the three lower terrace levels. After Reusser et al. 1602 

(2006).  1603 

 1604 



Fig. 8. Burial dating: application of two sampling strategies to different fluvial archives (left), 1605 

exemplified by dating results (right). a) Horizontal, abandoned phreatic tube, partly filled with river 1606 

sediments (Cumberland river catchment, Appalachian mountains, USA). Note the regular elliptic 1607 

cross-section of the former phreatic passage. After Anthony and Granger (2007), photo: D. Granger; 1608 

b) Topographic cross-section across the South Fork river canyon (Sierra Nevada, USA) displaying the 1609 

multi-level cave system in which burial dating was performed. Note the significant decrease of incision 1610 

rates toward present. After Stock et al. (2004); c) erosion-burial diagram, the bold line represents the 1611 

26Al/10Be ratio in steadily eroding rocks whereas the dashed curves refer to equal burial duration 1612 

(dotted lines refer to pre-burial erosion rates). All samples plot beneath the bold line and have 1613 

therefore experienced burial (New river, Appalachian mountains, USA). After Granger et al. (1997); d) 1614 

~10 m-thick, gravel terrace body overlain by a tephra layer, sampled at the base for isochron burial 1615 

dating because of insufficient shielding to cosmic rays (Gunnison river, Colorado plateau, USA). After 1616 

Darling et al. (2013), photo: L. Crossey; e) Graphical representation of burial dating isochron for a 1617 

gravel terrace, the burial age is calculated from the slope of the regression line (Sundays river, South 1618 

Africa). After Erlanger et al. (2012).  1619 
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Fig. 9. a) Comparison of 14C (uncertainties: one standard deviation) and OSL (uncertainties: one 1623 

standard error) dates. Calibration of radiocarbon dates: Calib 5.0 (Stuiver et al., 2005) with the 1624 

IntCal04 dataset (Reimer et al., 2004) for ages <26 14C ka BP and Fairbanks et al. (2005) for ages >26 1625 

14C ka BP. Note the systematic age underestimation of 14C dating beyond the 29-35 ka limit. After 1626 

Briant and Bateman (2009). b) Plot showing 10Be depth profile ages and 230Th/U ages for alluvial fan 1627 

deposits, both with 2σ error. Shaded red and blue boxes represent the mean 10Be exposure age and 1628 

mean U-series age, respectively. Note the slightly younger age range of 230Th/U dating (minimum age) 1629 

than the one defined by the depth profile, proving the usefulness of this combined approach. After 1630 

Blisniuk et al. (2012). c, d) Integrated 10Be depth profile and OSL model results in the model 1631 

parameter space of deposition time (t1), exposure time (t2), and 10Be inheritance for a single alluvial 1632 

sequence. The cosmogenic nuclide model best fit (thick red dot) with the 68% confidence level 1633 

envelope around it (red surface), the OSL model best fit (vertical blue line) with the 68% confidence 1634 

level envelope around it (blue surface) and the intersection of the two confidence surfaces (dark 1635 

surface) are shown on (c). The intersection alone is represented on (d), with its 2D projection onto the 1636 

axial planes (grey surfaces) and further 1D reprojection onto the axes (grey labelled lines). After 1637 

Guralnik et al. (2011). 1638 

 1639 


	Colarossi D., Duller G.A.T., Roberts H.M., Tooth S., Lyons R., 2015. Comparison of paired quartz OSL and feldspar post-IR IRSL dose distributions in poorly bleached fluvial sediments from South Africa. Quaternary Geochronology 30, 233-238.

