322 research outputs found

    Placebo Adherence and Its Association with Morbidity and Mortality in the Studies of Left Ventricular Dysfunction

    Get PDF
    A provocative finding from several double-blind clinical trials has been the association between greater adherence to placebo study medication and better health outcomes. We used data from the Studies of Left Ventricular Dysfunction (SOLVD) Treatment Trial (SOLVD-TT) and the SOLVD Prevention Trial (SOLVD-PT) to examine whether such associations could be validated and to examine several sources of bias and potential confounding. Survival analytic methods were used to estimate the association between placebo adherence and several health outcomes, employing a number of modeling techniques to test for the existence of alternative explanations for the association. Higher adherence was defined as having taken ≥75% of prescribed study medication. Higher placebo adherence was associated with improved overall survival in both SOLVD-TT and SOLVD-PT [hazard ratio (HR) = 0.52, 95% confidence interval (CI): 0.35 to 0.79 and HR = 0.52, 95%CI: 0.38 to 0.71, respectively]. Associations were similar for fatal or non-fatal cardiovascular or coronary heart disease events. Adjustment for both modifiable and non-modifiable cardiac risk factors (including age, gender, diabetes, blood pressure, smoking, weight, alcohol use, and levels of education) had minimal effect on the strength of the association. Little evidence of bias was found as an explanation for this relationship. In these two trials, better adherence to placebo was associated with markedly superior health outcomes, including total in-study mortality and incident cardiovascular events. No important confounders were identified. These data suggest there may exist strong but unrecognized determinants of health outcomes for which placebo adherence is a marker

    Serum lipids, apoproteins and nutrient intake in rural Cretan boys consuming high-olive-oil diets

    Get PDF
    A high intake of olive oil has produced high levels of high-density and low levels of low-density lipoprotein cholesterol in short-term dietary trials. To investigate long-term effects of olive oil we have studied the diet and serum lipids of boys in Crete, where a high olive oil consumption is the norm. Seventy-six healthy rural Cretan boys aged 7–9 years were studied. The diet was assessed by a 2-day dietary recall. Blood was collected according to a standardized protocol and sera were analyzed in a rigidly standardized laboratory. The mean daily intake of energy was 11.0 MJ (2629 kcal). The intake of fat (45.0% of energy) and oleic acid (27.2% of energy) was high, and that of saturated fat low (10.0% of energy), reflecting a high consumption of olive oil. The high consumption of olive oil was confirmed by a high proportion of oleic-acid (27.1 %) in serum cholesteryl fatty acids. Mean concentration of serum total cholesterol was 4.42 mmol 1−1 (171 mg dl−1 ), of HDL-cholesterol 1.40 mmol 1−1 (54 mg dl−1), of serum triglycerides 0.59 mmol I−1 (52 mg dl−1 ), of apo-A1 1210 mg 1−1 and of LDL apo-B 798 mg 1−1. The body mass index of the Cretan boys (18.2 kg m−2) was on average 2 kg m−2 higher than that of boys from other countries. Contrary to our expectation, the Cretan boys did not show a more favourable serum lipoprotein pattern than boys from more westernized countries studied previously using the same protocol. Our hypothesis that a typical, olive-oil-rich Cretan diet causes a relatively high HDL- to total cholesterol ratio is not supported by the present findings

    Colesevelam lowers glucose and lipid levels in type 2 diabetes: the clinical evidence

    Get PDF
    Simultaneous control of blood glucose and other risk factors such as hypertension and dyslipidaemia is essential for reducing the risk of complications associated with type 2 diabetes mellitus (T2DM). As relatively few patients with T2DM have their risk factors managed to within the limits recommended by the American Diabetes Association, American College of Endocrinology or National Cholesterol Education Program Adult Treatment Panel III guidelines, treatment that can simultaneously control more than one risk factor is of therapeutic benefit. Clinical studies have shown that bile acid sequestrants have glucose-lowering effects in addition to their low-density lipoprotein cholesterol-lowering effects in patients with T2DM. The bile acid sequestrant colesevelam hydrochloride is approved as an adjunct to antidiabetes therapy for improving glycaemic control in adults with T2DM. This review examines data from three phase III clinical trials that evaluated the glucose- and lipid-lowering effects of colesevelam when added to the existing antidiabetes treatment regimen of patients with T2DM

    HEART UK statement on the management of homozygous familial hypercholesterolaemia in the United Kingdom

    Get PDF
    This consensus statement addresses the current three main modalities of treatment of homozygous familial hypercholesterolaemia (HoFH): pharmacotherapy, lipoprotein (Lp) apheresis and liver transplantation. HoFH may cause very premature atheromatous arterial disease and death, despite treatment with Lp apheresis combined with statin, ezetimibe and bile acid sequestrants. Two new classes of drug, effective in lowering cholesterol in HoFH, are now licensed in the United Kingdom. Lomitapide is restricted to use in HoFH but, may cause fatty liver and is very expensive. PCSK9 inhibitors are quite effective in receptor defective HoFH, are safe and are less expensive. Lower treatment targets for lipid lowering in HoFH, in line with those for the general FH population, have been proposed to improve cardiovascular outcomes. HEART UK presents a strategy combining Lp apheresis with pharmacological treatment to achieve these targets in the United Kingdom (UK). Improved provision of Lp apheresis by use of existing infrastructure for extracorporeal treatments such as renal dialysis is promoted. The clinical management of adults and children with HoFH including advice on pregnancy and contraception are addressed. A premise of the HEART UK strategy is that the risk of early use of drug treatments beyond their licensed age restriction may be balanced against risks of liver transplantation or ineffective treatment in severely affected patients. This may be of interest beyond the UK

    Obesity and the Dysregulation of Fatty Acid Metabolism: Implications for Healthy Aging

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Expert Review of Endocrinology & Metabolism on 17/10/2016, available online: http://dx.doi.org/10.1080/17446651.2016.1245141The population of the world is aging. In 2010, an estimated 524 million people were aged 65 years or older presenting eight percent of the global population. By 2050, this number is expected to nearly triple to approximately 1.5 billion, 16 percent of the world’s population. Although people are living longer, the quality of their lives are often compromised due to ill-health. Areas covered. Of the conditions which compromise health as we age, obesity is at the forefront. Over half of the global older population were overweight or obese in 2010, significantly increasing the risk of a range of metabolic diseases. Although, it is well recognised excessive calorie intake is a fundamental driver of adipose tissue dysfunction, the relationship between obesity; intrinsic aging; and fat metabolism is less understood. In this review we discuss the intersection between obesity, aging and the factors which contribute to the dysregulation of whole-body fat metabolism. Expert Commentary. Being obese disrupts an array of physiological systems and there is significant crosstalk among these. Moreover it is imperative to acknowledge the contribution intrinsic aging makes to the dysregulation of these systems and the onset of disease

    Univariate and bivariate analyses of cholesterol and triglyceride levels in pedigrees

    Full text link
    A multivariate normal model for pedigree analysis is applied to fasting total serum cholesterol and total serum triglyceride measurements on 771 individuals in 95 pedigrees from Rochester, MN. Univariate and bivariate analyses are carried out to determine to what extent the aggregation and coaggregation in families of these two traits may be attributed to shared genetic and environmental factors. Pedigrees were ascertained through a sample of schoolchildren enriched for those with serum cholesterol levels in the highest and lowest deciles of their age- and sex-specific distributions. Ascertainment is corrected for by conditioning the likelihood on the trait values of the probands. Univariate results confirm the findings of previous studies indicating that familial aggregation of serum cholesterol and triglyceride levels is due both to shared genes and to shared environmental factors. Results of the bivariate analyses suggest that the coaggregation of cholesterol and triglyceride levels in these families is strongly influenced by both shared genes (pleiotropy) and shared environmental factors. These findings are consistent with our understanding of lipid metabolism and of specific environmental factors known to influence both traits.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38240/1/1320230306_ftp.pd

    Food Use and Health Effects of Soybean and Sunflower Oils

    Get PDF
    This review provides a scientific assessment of current knowledge of health effects of soybean oil (SBO) and sunflower oil (SFO). SBO and SFO both contain high levels of polyunsaturated fatty acids (PUFA) (60.8 and 69%, respectively), with a PUFA:saturated fat ratio of 4.0 for SBO and 6.4 for SFO. SFO contains 69% C18:2n-6 and less than 0.1% C18:3n-3, while SBO contains 54% C18:2n-6 and 7.2% C18:3n-3. Thus, SFO and SBO each provide adequate amounts of C18:2n-6, but of the two, SBO provides C18:3n-3 with a C18:2n-6:C18:3n-3 ratio of 7.1. Epidemiological evidence has suggested an inverse relationship between the consumption of diets high in vegetable fat and blood pressure, although clinical findings have been inconclusive. Recent dietary guidelines suggest the desirability of decreasing consumption of total and saturated fat and cholesterol, an objective that can be achieved by substituting such oils as SFO and SBO for animal fats. Such changes have consistently resulted in decreased total and low-density-lipoprotein cholesterol, which is thought to be favorable with respect to decreasing risk of cardiovascular disease. Also, decreases in high-density-lipoprotein cholesterol have raised some concern. Use of vegetable oils such as SFO and SBO increases C18:2n-6, decreases C20:4n-6, and slightly elevated C20:5n-3 and C22:6n-3 in platelets, changes that slightly inhibit platelet generation of thromboxane and ex vivo aggregation. Whether chronic use of these oils will effectively block thrombosis at sites of vascular injury, inhibit pathologic platelet vascular interactions associated with atherosclerosis, or reduce the incidence of acute vascular occlusion in the coronary or cerebral circulation is uncertain. Linoleic acid is needed for normal immune response, and essential fatty acid (EFA) deficiency impairs B and T cell-mediated responses. SBO and SFO can provide adequate linoleic acid for maintenance of the immune response. Excess linoleic acid has supported tumor growth in animals, an effect not verified by data from diverse human studies of risk, incidence, or progression of cancers of the breast and colon. Areas yet to be investigated include the differential effects of n-6- and n-3-containing oil on tumor development in humans and whether shorter-chain n-3 PUFA of plant origin such as found in SBO will modulate these actions of linoleic acid, as has been shown for the longer-chain n-3 PUFA of marine oil

    Reduction in saturated fat intake for cardiovascular disease

    Get PDF
    BACKGROUND: Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally, it is unclear whether the energy from saturated fats eliminated from the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. OBJECTIVES: To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA), monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials. SEARCH METHODS: We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and Embase (Ovid) on 15 October 2019, and searched Clinicaltrials.gov and WHO International Clinical Trials Registry Platform (ICTRP) on 17 October 2019. SELECTION CRITERIA: Included trials fulfilled the following criteria: 1) randomised; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) compared with higher saturated fat intake or usual diet; 4) not multifactorial; 5) in adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 6) intervention duration at least 24 months; 7) mortality or cardiovascular morbidity data available. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed inclusion, extracted study data and assessed risk of bias. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses, funnel plots and GRADE assessment. MAIN RESULTS: We included 15 randomised controlled trials (RCTs) (16 comparisons, ~59,000 participants), that used a variety of interventions from providing all food to advice on reducing saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of combined cardiovascular events by 21% (risk ratio (RR) 0.79; 95% confidence interval (CI) 0.66 to 0.93, 11 trials, 53,300 participants of whom 8% had a cardiovascular event, I² = 65%, GRADE moderate-quality evidence). Meta-regression suggested that greater reductions in saturated fat (reflected in greater reductions in serum cholesterol) resulted in greater reductions in risk of CVD events, explaining most heterogeneity between trials. The number needed to treat for an additional beneficial outcome (NNTB) was 56 in primary prevention trials, so 56 people need to reduce their saturated fat intake for ~four years for one person to avoid experiencing a CVD event. In secondary prevention trials, the NNTB was 32. Subgrouping did not suggest significant differences between replacement of saturated fat calories with polyunsaturated fat or carbohydrate, and data on replacement with monounsaturated fat and protein was very limited. We found little or no effect of reducing saturated fat on all-cause mortality (RR 0.96; 95% CI 0.90 to 1.03; 11 trials, 55,858 participants) or cardiovascular mortality (RR 0.95; 95% CI 0.80 to 1.12, 10 trials, 53,421 participants), both with GRADE moderate-quality evidence. There was little or no effect of reducing saturated fats on non-fatal myocardial infarction (RR 0.97, 95% CI 0.87 to 1.07) or CHD mortality (RR 0.97, 95% CI 0.82 to 1.16, both low-quality evidence), but effects on total (fatal or non-fatal) myocardial infarction, stroke and CHD events (fatal or non-fatal) were all unclear as the evidence was of very low quality. There was little or no effect on cancer mortality, cancer diagnoses, diabetes diagnosis, HDL cholesterol, serum triglycerides or blood pressure, and small reductions in weight, serum total cholesterol, LDL cholesterol and BMI. There was no evidence of harmful effects of reducing saturated fat intakes. AUTHORS' CONCLUSIONS: The findings of this updated review suggest that reducing saturated fat intake for at least two years causes a potentially important reduction in combined cardiovascular events. Replacing the energy from saturated fat with polyunsaturated fat or carbohydrate appear to be useful strategies, while effects of replacement with monounsaturated fat are unclear. The reduction in combined cardiovascular events resulting from reducing saturated fat did not alter by study duration, sex or baseline level of cardiovascular risk, but greater reduction in saturated fat caused greater reductions in cardiovascular events
    corecore