1,442 research outputs found

    Dressing the Part …

    Get PDF

    Does higher sampling rate (multiband + SENSE) improve group statistics - An example from social neuroscience block design at 3T

    Get PDF
    Multiband (MB) or Simultaneous multi-slice (SMS) acquisition schemes allow the acquisition of MRI signals from more than one spatial coordinate at a time. Commercial availability has brought this technique within the reach of many neuroscientists and psychologists. Most early evaluation of the performance of MB acquisition employed resting state fMRI or the most basic tasks. In this study, we tested whether the advantages of using MB acquisition schemes generalize to group analyses using a cognitive task more representative of typical cognitive neuroscience applications. Twenty-three subjects were scanned on a Philips 3 ​T scanner using five sequences, up to eight-fold acceleration with MB-factors 1 to 4, SENSE factors up to 2 and corresponding TRs of 2.45s down to 0.63s, while they viewed (i) movie blocks showing complex actions with hand object interactions and (ii) control movie blocks without hand object interaction. Data were processed using a widely used analysis pipeline implemented in SPM12 including the unified segmentation and canonical HRF modelling. Using random effects group-level, voxel-wise analysis we found that all sequences were able to detect the basic action observation network known to be recruited by our task. The highest t-values were found for sequences with MB4 acceleration. For the MB1 sequence, a 50% bigger voxel volume was needed to reach comparable t-statistics. The group-level t-values for resting state networks (RSNs) were also highest for MB4 sequences. Here the MB1 sequence with larger voxel size did not perform comparable to the MB4 sequence. Altogether, we can thus recommend the use of MB4 (and SENSE 1.5 or 2) on a Philips scanner when aiming to perform group-level analyses using cognitive block design fMRI tasks and voxel sizes in the range of cortical thickness (e.g. 2.7 ​mm isotropic). While results will not be dramatically changed by the use of multiband, our results suggest that MB will bring a moderate but significant benefit

    Adipose Tissue Distribution and Survival Among Women with Nonmetastatic Breast Cancer.

    Get PDF
    ObjectivePrevious studies of breast cancer survival have not considered specific depots of adipose tissue such as subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT).MethodsThis study assessed these relationships among 3,235 women with stage II and III breast cancer diagnosed between 2005 and 2013 at Kaiser Permanente Northern California and between 2000 and 2012 at Dana Farber Cancer Institute. SAT and VAT areas (in centimeters squared) were calculated from routine computed tomography scans within 6 (median: 1.2) months of diagnosis, covariates were collected from electronic health records, and vital status was assessed by death records. Hazard ratios (HRs) and 95% CIs were estimated using Cox regression.ResultsSAT and VAT ranged from 19.0 to 891 cm2 and from 0.484 to 454 cm2 , respectively. SAT was related to increased risk of death (127-cm2 increase; HR [95% CI]: 1.13 [1.02-1.26]), but no relationship was found with VAT (78.18-cm2 increase; HR [95% CI]: 1.02 [0.91-1.14]). An association with VAT was noted among women with stage II cancer (stage II: HR: 1.17 [95% CI: 0.99-1.39]; stage III: HR: 0.90 [95% CI: 0.76-1.07]; P interaction < 0.01). Joint increases in SAT and VAT were associated with mortality above either alone (simultaneous 1-SD increase: HR 1.19 [95% CI: 1.05-1.34]).ConclusionsSAT may be an underappreciated risk factor for breast cancer-related death

    Neuropsychiatric symptoms of cholinergic deficiency occur with degradation of the projections from the nucleus basalis of Meynert

    Get PDF
    This study aims to evaluate the relation between a cluster of neuropsychiatric symptoms related to cholinergic deficiency and degradation of the cortical cholinergic projections which project from the nucleus basalis of Meynert to the cerebral cortex. An atlas of the pathway from the nucleus basalis to the cortex (NbM cortical pathway) was constructed using diffusion tensor imaging and tractography in 87 memory clinic patients. Structural degradation was considered to be represented by lower fractional anisotropy (FA) and higher mean diffusivity (MD). Neuropsychiatric symptoms were assessed using the Neuropsychiatric Inventory. A predefined cluster including agitation, anxiety, apathy, delusions, hallucinations, and irritability was labeled as the cholinergic deficiency syndrome (CDS). In regression analyses, lower FA and higher MD in the NbM cortical pathway were associated with CDS symptoms but not with other neuropsychiatric symptoms. These associations were independent of cerebral atrophy and overall FA or MD. There was no association between interruption of the NbM cortical pathway by white matter hyperintensities and CDS symptoms. Cox regression suggested a trend for higher mortality with lower FA in the NbM cortical pathway may exist. These findings provide anatomical support for the hypothesis that degradation of the cholinergic projections from the nucleus basalis of Meynert may lead to a distinct clinical syndrome. Future studies could use our results to test the utility of assessing NbM projection integrity to identify patients who may benefit from cholinergic treatment or with a worse prognosi

    No evidence for externally triggered substorms based on superposed epoch analysis of IMF Bz

    Get PDF
    Superposed epoch analyses have shown that, on average, the interplanetary magnetic field (IMF) turns northward close to substorm onset. This has been commonly accepted as evidence for the substorm onset being triggered by a rapid northward turning of the IMF. Here we show that the tendency arises in any superposed epoch analysis of the IMF in which event onset is biased to occur for southward IMF, irrespective of a coincident rapid northward turning of the IMF. The overall IMF variation found in the largest superposed epoch analysis of this kind is also well reproduced using a Minimal Substorm Model in which substorm onsets are determined without the requirement of a northward IMF turning trigger. We discuss the explanation underlying these results and conclude that there is no conclusive evidence in favour of the hypothesis that substorm onsets are triggered by a rapid northward turning of the IMF. Citation: Freeman, M. P., and S. K. Morley (2009), No evidence for externally triggered substorms based on superposed epoch analysis of IMF B-z, Geophys. Res. Lett., 36, L21101, doi: 10.1029/2009GL040621

    Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker

    Get PDF
    Machine learning analysis of neuroimaging data can accurately predict chronological age in healthy people. Deviations from healthy brain ageing have been associated with cognitive impairment and disease. Here we sought to further establish the credentials of ‘brain-predicted age’ as a biomarker of individual differences in the brain ageing process, using a predictive modelling approach based on deep learning, and specifically convolutional neural networks (CNN), and applied to both pre-processed and raw T1-weighted MRI data. Firstly, we aimed to demonstrate the accuracy of CNN brain-predicted age using a large dataset of healthy adults (N = 2001). Next, we sought to establish the heritability of brain-predicted age using a sample of monozygotic and dizygotic female twins (N = 62). Thirdly, we examined the test-retest and multi-centre reliability of brain-predicted age using two samples (within-scanner N = 20; between-scanner N = 11). CNN brain-predicted ages were generated and compared to a Gaussian Process Regression (GPR) approach, on all datasets. Input data were grey matter (GM) or white matter (WM) volumetric maps generated by Statistical Parametric Mapping (SPM) or raw data. CNN accurately predicted chronological age using GM (correlation between brain-predicted age and chronological age r = 0.96, mean absolute error [MAE] = 4.16 years) and raw (r = 0.94, MAE = 4.65 years) data. This was comparable to GPR brain-predicted age using GM data (r = 0.95, MAE = 4.66 years). Brain-predicted age was a heritable phenotype for all models and input data (h2 ≥ 0.5). Brain-predicted age showed high test-retest reliability (intraclass correlation coefficient [ICC] = 0.90–0.99). Multi-centre reliability was more variable within high ICCs for GM (0.83–0.96) and poor-moderate levels for WM and raw data (0.51–0.77). Brain-predicted age represents an accurate, highly reliable and genetically-influenced phenotype, that has potential to be used as a biomarker of brain ageing. Moreover, age predictions can be accurately generated on raw T1-MRI data, substantially reducing computation time for novel data, bringing the process closer to giving real-time information on brain health in clinical settings
    • …
    corecore