470 research outputs found

    Heredity of type 2 diabetes confers increased susceptibility to oxidative stress and inflammation.

    Get PDF
    INTRODUCTION AND OBJECTIVE: Heredity of type 2 diabetes mellitus (T2DM) is associated with greater risk for developing T2DM. Thus, individuals who have a first-degree relative with T2DM (FDRT) provide a natural model to study factors of susceptibility towards development of T2DM, which are poorly understood. Emerging key players in T2DM pathophysiology such as adverse oxidative stress and inflammatory responses could be among possible mechanisms that predispose FDRTs to develop T2DM. Here, we aimed to examine the role of oxidative stress and inflammatory responses as mediators of this excess risk by studying dynamic postprandial responses in FDRTs. RESEARCH DESIGN AND METHODS: In this open-label case-control study, we recruited normoglycemic men with (n=9) or without (n=9) a family history of T2DM. We assessed plasma glucose, insulin, lipid profile, cytokines and F2-isoprostanes, expression levels of oxidative and inflammatory genes/proteins in circulating mononuclear cells (MNC), myotubes and adipocytes at baseline (fasting state), and after consumption of a carbohydrate-rich liquid meal or insulin stimulation. RESULTS: Postprandial glucose and insulin responses were not different between groups. Expression of oxidant transcription factor NRF2 protein (p<0.05 for myotubes) and gene (pgroup=0.002, ptime×group=0.016), along with its target genes TXNRD1 (pgroup=0.004, ptime×group=0.007), GPX3 (pgroup=0.011, ptime×group=0.019) and SOD-1 (pgroup=0.046 and ptime×group=0.191) was upregulated in FDRT-derived MNC after meal ingestion or insulin stimulation. Synergistically, expression of target genes of inflammatory transcription factor nuclear factor kappa B such as tumor necrosis factor alpha (pgroup=0.001, ptime×group=0.007) was greater in FDRT-derived MNC than in non-FDRT-derived MNC after meal ingestion or insulin stimulation. CONCLUSIONS: Our findings shed light on how heredity of T2DM confers increased susceptibility to oxidative stress and inflammation. This could provide early insights into the underlying mechanisms and future risk of FDRTs for developing T2DM and its associated complications

    Suv4-20h Histone Methyltransferases Promote Neuroectodermal Differentiation by Silencing the Pluripotency-Associated Oct-25 Gene

    Get PDF
    Post-translational modifications (PTMs) of histones exert fundamental roles in regulating gene expression. During development, groups of PTMs are constrained by unknown mechanisms into combinatorial patterns, which facilitate transitions from uncommitted embryonic cells into differentiated somatic cell lineages. Repressive histone modifications such as H3K9me3 or H3K27me3 have been investigated in detail, but the role of H4K20me3 in development is currently unknown. Here we show that Xenopus laevis Suv4-20h1 and h2 histone methyltransferases (HMTases) are essential for induction and differentiation of the neuroectoderm. Morpholino-mediated knockdown of the two HMTases leads to a selective and specific downregulation of genes controlling neural induction, thereby effectively blocking differentiation of the neuroectoderm. Global transcriptome analysis supports the notion that these effects arise from the transcriptional deregulation of specific genes rather than widespread, pleiotropic effects. Interestingly, morphant embryos fail to repress the Oct4-related Xenopus gene Oct-25. We validate Oct-25 as a direct target of xSu4-20h enzyme mediated gene repression, showing by chromatin immunoprecipitaton that it is decorated with the H4K20me3 mark downstream of the promoter in normal, but not in double-morphant, embryos. Since knockdown of Oct-25 protein significantly rescues the neural differentiation defect in xSuv4-20h double-morphant embryos, we conclude that the epistatic relationship between Suv4-20h enzymes and Oct-25 controls the transit from pluripotent to differentiation-competent neural cells. Consistent with these results in Xenopus, murine Suv4-20h1/h2 double-knockout embryonic stem (DKO ES) cells exhibit increased Oct4 protein levels before and during EB formation, and reveal a compromised and biased capacity for in vitro differentiation, when compared to normal ES cells. Together, these results suggest a regulatory mechanism, conserved between amphibians and mammals, in which H4K20me3-dependent restriction of specific POU-V genes directs cell fate decisions, when embryonic cells exit the pluripotent state

    A global optimization approach to fractional optimal control

    Get PDF
    In this paper, we consider a fractional optimal control problem governed by system of linear differential equations, where its cost function is expressed as the ratio of convex and concave functions. The problem is a hard nonconvex optimal control problem and application of Pontriyagin's principle does not always guarantee finding a global optimal control. Even this type of problems in a finite dimensional space is known as NP hard. This optimal control problem can, in principle, be solved by Dinkhelbach algorithm [10]. However, it leads to solving a sequence of hard D.C programming problems in its finite dimensional analogy. To overcome this difficulty, we introduce a reachable set for the linear system. In this way, the problem is reduced to a quasiconvex maximization problem in a finite dimensional space. Based on a global optimality condition, we propose an algorithm for solving this fractional optimal control problem and we show that the algorithm generates a sequence of local optimal controls with improved cost values. The proposed algorithm is then applied to several test problems, where the global optimal cost value is obtained for each case

    Candidate-gene based GWAS identifies reproducible DNA markers for metabolic pyrethroid resistance from standing genetic variation in East African Anopheles gambiae.

    Get PDF
    Metabolic resistance to pyrethroid insecticides is widespread in Anopheles mosquitoes and is a major threat to malaria control. DNA markers would aid predictive monitoring of resistance, but few mutations have been discovered outside of insecticide-targeted genes. Isofemale family pools from a wild Ugandan Anopheles gambiae population, from an area where operational pyrethroid failure is suspected, were genotyped using a candidate-gene enriched SNP array. Resistance-associated SNPs were detected in three genes from detoxification superfamilies, in addition to the insecticide target site (the Voltage Gated Sodium Channel gene, Vgsc). The putative associations were confirmed for two of the marker SNPs, in the P450 Cyp4j5 and the esterase Coeae1d by reproducible association with pyrethroid resistance in multiple field collections from Uganda and Kenya, and together with the Vgsc-1014S (kdr) mutation these SNPs explained around 20% of variation in resistance. Moreover, the >20 Mb 2La inversion also showed evidence of association with resistance as did environmental humidity. Sequencing of Cyp4j5 and Coeae1d detected no resistance-linked loss of diversity, suggesting selection from standing variation. Our study provides novel, regionally-validated DNA assays for resistance to the most important insecticide class, and establishes both 2La karyotype variation and humidity as common factors impacting the resistance phenotype

    Current status of the management of hereditary breast and ovarian cancer in Asia: first report by the Asian BRCA consortium

    Get PDF
    Poster Presentation - Risk and Prevention: no. PO140BACKGROUND/PURPOSE: BRCA1/2 mutation carriers possess an elevated lifetime risk for hereditary breast and ovarian cancer (HBOC), yet the availability of risk assessment and genetic testing for HBOC in Asians is far limited, thus limiting the chances for ap¬propriate surveillance, clinical strategies and cancer management …published_or_final_versio
    corecore