86 research outputs found

    Advances in small lasers

    Get PDF
    M.T.H was supported by an Australian Research council Future Fellowship research grant for this work. M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support.Small lasers have dimensions or modes sizes close to or smaller than the wavelength of emitted light. In recent years there has been significant progress towards reducing the size and improving the characteristics of these devices. This work has been led primarily by the innovative use of new materials and cavity designs. This Review summarizes some of the latest developments, particularly in metallic and plasmonic lasers, improvements in small dielectric lasers, and the emerging area of small bio-compatible or bio-derived lasers. We examine the different approaches employed to reduce size and how they result in significant differences in the final device, particularly between metal- and dielectric-cavity lasers. We also present potential applications for the various forms of small lasers, and indicate where further developments are required.PostprintPeer reviewe

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Potential role of p53 on metallothionein induction in human epithelial breast cancer cells

    Get PDF
    The expression and induction of metallothionein has been associated with protection against oxidative stress and apoptosis. This study examines the effect of tumour suppressor protein p53 on metallothionein expression following CdCl2 treatment in eight human epithelial breast cancer cell lines differing in p53 and oestrogen-receptor status. Cells were treated with 10 μM CdCl2 for 24 h and metallothionein protein levels were measured by cadmium binding assay. MCF7 cells which are p53-positive (p53+) and oestrogen-receptor-positive showed a large induction in metallothionein synthesis by 10.79±1.36-fold. Other breast cancer cell lines which are p53-negative (p53−) and oestrogen-receptor-negative or weakly oestrogen-receptor-positive showed a small induction ranging from 1.40±0.10 to 3.65±0.30-fold. RT–PCR analysis showed an induction of metallothionein mRNA in MCF7 cells by about 1.61±0.08-fold, while in HCC1806 cells (p53−, oestrogen-receptor-negative) by 1.11±0.13-fold, and in MDA-MB-231 (p53−, oestrogen-receptor-negative) by 1.25±0.06-fold. Metallothionein localisation was determined by immunohistochemical staining. Prior to metal treatment, metallothionein was localised mainly in the cytoplasm of MCF7 and MDA-MB-231 cells. After treatment with 10 μM CdCl2 for 24 h, MCF7 cells showed intense nuclear and cytoplasmic staining for metallothionein, while MDA-MB-231 cells showed staining in the cytoplasm with weak nuclear staining. Apoptosis induced by 10–40 μM CdCl2 at time points between 4 and 48 h was examined with TUNEL assay. In MCF7 cells, apoptosis increased with higher concentrations of CdCl2, it peaked at 6–8 h and appeared again at 48 h for all concentrations of CdCl2 tested. In MDA-MB-231 cells, apoptosis remained at low levels for 10–40 μM CdCl2 at all time points. Studies on cadmium uptake showed similar uptake and accumulation of cadmium at 8 and 24 h in all the cell lines. The data demonstrate that treatment of epithelial breast cancer cells with 10 μM CdCl2 for 24 h caused a greater induction of metallothionein protein and mRNA expression in p53+ and oestrogen-receptor-positive cells as compared to p53− and oestrogen-receptor-negative or weakly oestrogen-receptor-positive cells. This effect may be associated with the occurrence of apoptosis and suggests a role for p53 and oestrogen-receptor on the expression and induction of metallothionein in epithelial cells

    Measurement of prompt J/ψ pair production in pp collisions at √s = 7 Tev

    Get PDF
    Peer reviewe

    Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV

    Get PDF
    Peer reviewe

    Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore