121 research outputs found
LSST Science Book, Version 2.0
A survey that can cover the sky in optical bands over wide fields to faint
magnitudes with a fast cadence will enable many of the exciting science
opportunities of the next decade. The Large Synoptic Survey Telescope (LSST)
will have an effective aperture of 6.7 meters and an imaging camera with field
of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over
20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with
fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a
total point-source depth of r~27.5. The LSST Science Book describes the basic
parameters of the LSST hardware, software, and observing plans. The book
discusses educational and outreach opportunities, then goes on to describe a
broad range of science that LSST will revolutionize: mapping the inner and
outer Solar System, stellar populations in the Milky Way and nearby galaxies,
the structure of the Milky Way disk and halo and other objects in the Local
Volume, transient and variable objects both at low and high redshift, and the
properties of normal and active galaxies at low and high redshift. It then
turns to far-field cosmological topics, exploring properties of supernovae to
z~1, strong and weak lensing, the large-scale distribution of galaxies and
baryon oscillations, and how these different probes may be combined to
constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at
http://www.lsst.org/lsst/sciboo
Development of Risk Prediction Equations for Incident Chronic Kidney Disease
IMPORTANCE ‐ Early identification of individuals at elevated risk of developing chronic kidney disease
could improve clinical care through enhanced surveillance and better management of underlying health
conditions.
OBJECTIVE – To develop assessment tools to identify individuals at increased risk of chronic kidney
disease, defined by reduced estimated glomerular filtration rate (eGFR).
DESIGN, SETTING, AND PARTICIPANTS – Individual level data analysis of 34 multinational cohorts from
the CKD Prognosis Consortium including 5,222,711 individuals from 28 countries. Data were collected from April, 1970 through January, 2017. A two‐stage analysis was performed, with each study first
analyzed individually and summarized overall using a weighted average. Since clinical variables were often differentially available by diabetes status, models were developed separately within participants
with diabetes and without diabetes. Discrimination and calibration were also tested in 9 external
cohorts (N=2,253,540).
EXPOSURE Demographic and clinical factors.
MAIN OUTCOMES AND MEASURES – Incident eGFR <60 ml/min/1.73 m2.
RESULTS – In 4,441,084 participants without diabetes (mean age, 54 years, 38% female), there were
660,856 incident cases of reduced eGFR during a mean follow‐up of 4.2 years. In 781,627 participants
with diabetes (mean age, 62 years, 13% female), there were 313,646 incident cases during a mean
follow‐up of 3.9 years. Equations for the 5‐year risk of reduced eGFR included age, sex, ethnicity, eGFR,
history of cardiovascular disease, ever smoker, hypertension, BMI, and albuminuria. For participants
with diabetes, the models also included diabetes medications, hemoglobin A1c, and the interaction
between the two. The risk equations had a median C statistic for the 5‐year predicted probability of
0.845 (25th – 75th percentile, 0.789‐0.890) in the cohorts without diabetes and 0.801 (25th – 75th
percentile, 0.750‐0.819) in the cohorts with diabetes. Calibration analysis showed that 9 out of 13 (69%)
study populations had a slope of observed to predicted risk between 0.80 and 1.25. Discrimination was
similar in 18 study populations in 9 external validation cohorts; calibration showed that 16 out of 18
(89%) had a slope of observed to predicted risk between 0.80 and 1.25.
CONCLUSIONS AND RELEVANCE – Equations for predicting risk of incident chronic kidney disease
developed in over 5 million people from 34 multinational cohorts demonstrated high discrimination and
variable calibration in diverse populations
The Discovery of a Gravitationally Lensed Supernova Ia at Redshift 2.22
We present the discovery and measurements of a gravitationally lensed supernova (SN) behind the galaxy cluster MOO J1014+0038. Based on multi-band Hubble Space Telescope and Very Large Telescope (VLT) photometry of the supernova, and VLT spectroscopy of the host galaxy, we find a 97.5% probability that this SN is a SN Ia, and a 2.5% chance of a CC SN. Our typing algorithm combines the shape and color of the light curve with the expected rates of each SN type in the host galaxy. With a redshift of 2.2216, this is the highest redshift SN Ia discovered with a spectroscopic host-galaxy redshift. A further distinguishing feature is that the lensing cluster, at redshift 1.23, is the most distant to date to have an amplified SN. The SN lies in the middle of the color and light-curve shape distributions found at lower redshift, disfavoring strong evolution to z = 2.22. We estimate an amplification due to gravitational lensing of 2.8+0.6-0.5 (1.10 +- 0.23 mag)---compatible with the value estimated from the weak-lensing-derived mass and the mass-concentration relation from LambdaCDM simulations---making it the most amplified SN Ia discovered behind a galaxy cluster
Shared heritability and functional enrichment across six solid cancers
Correction: Nature Communications 10 (2019): art. 4386 DOI: 10.1038/s41467-019-12095-8Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (r(g) = 0.57, p = 4.6 x 10(-8)), breast and ovarian cancer (r(g) = 0.24, p = 7 x 10(-5)), breast and lung cancer (r(g) = 0.18, p = 1.5 x 10(-6)) and breast and colorectal cancer (r(g) = 0.15, p = 1.1 x 10(-4)). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.Peer reviewe
Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have
fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in
25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16
regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of
correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP,
while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in
Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium
(LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region.
Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant
enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the
refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa,
an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of
PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent
signals within the same regio
Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.
Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction
Germline variation at 8q24 and prostate cancer risk in men of European ancestry
Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification
Characterizing Prostate Cancer Risk Through Multi-Ancestry Genome-Wide Discovery of 187 Novel Risk Variants
The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups
Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants
Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe
- …