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Key Points:

Question: Can development of chronic kidney disease be predicted using readily available demographic,
clinical, and laboratory variables?

Findings: In this analysis of 5,222,711 individuals in 34 multinational cohorts from 28 countries, 5-year
risk prediction equations for CKD were developed and demonstrated high discrimination (median C-
statistic for the equation for people without diabetes, 0.85; median C-statistic for the equation for
people with diabetes, 0.80) and variable calibration (69% of the study populations had a slope of
observed to predicted risk between 0.80 and 1.25). Discrimination and calibration were similarin 9
external cohorts consisting of 2,253,540 people.

Meaning: Equations for predicting risk of incident chronic kidney disease were developed in over 5
million people from 34 multinational cohorts and demonstrated high discrimination and variable

calibration in diverse populations.
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ABSTRACT

IMPORTANCE - Early identification of individuals at elevated risk of developing chronic kidney disease
could improve clinical care through enhanced surveillance and better management of underlying health
conditions.

OBJECTIVE — To develop assessment tools to identify individuals at increased risk of chronic kidney
disease, defined by reduced estimated glomerular filtration rate (eGFR).

DESIGN, SETTING, AND PARTICIPANTS — Individual level data analysis of 34 multinational cohorts from
the CKD Prognosis Consortium including 5,222,711 individuals from 28 countries. Data were collected
from April, 1970 through January, 2017. A two-stage analysis was performed, with each study first
analyzed individually and summarized overall using a weighted average. Since clinical variables were
often differentially available by diabetes status, models were developed separately within participants
with diabetes and without diabetes. Discrimination and calibration were also tested in 9 external
cohorts (N=2,253,540).

EXPOSURE Demographic and clinical factors.

MAIN OUTCOMES AND MEASURES — Incident eGFR <60 ml/min/1.73 m?.

RESULTS —In 4,441,084 participants without diabetes (mean age, 54 years, 38% female), there were
660,856 incident cases of reduced eGFR during a mean follow-up of 4.2 years. In 781,627 participants
with diabetes (mean age, 62 years, 13% female), there were 313,646 incident cases during a mean
follow-up of 3.9 years. Equations for the 5-year risk of reduced eGFR included age, sex, ethnicity, eGFR,
history of cardiovascular disease, ever smoker, hypertension, BMI, and albuminuria. For participants
with diabetes, the models also included diabetes medications, hemoglobin Alc, and the interaction
between the two. The risk equations had a median C statistic for the 5-year predicted probability of
0.845 (25 — 75" percentile, 0.789-0.890) in the cohorts without diabetes and 0.801 (25" — 75t

percentile, 0.750-0.819) in the cohorts with diabetes. Calibration analysis showed that 9 out of 13 (69%)
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study populations had a slope of observed to predicted risk between 0.80 and 1.25. Discrimination was
similar in 18 study populations in 9 external validation cohorts; calibration showed that 16 out of 18
(89%) had a slope of observed to predicted risk between 0.80 and 1.25.

CONCLUSIONS AND RELEVANCE — Equations for predicting risk of incident chronic kidney disease
developed in over 5 million people from 34 multinational cohorts demonstrated high discrimination and

variable calibration in diverse populations.
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INTRODUCTION

Chronic kidney disease (CKD) is a global public health problem that is associated with major adverse
health events, including kidney failure, cardiovascular disease, and death. The Global Burden of Disease
study estimates that nearly 697 million persons worldwide had reduced estimated glomerular filtration
rate (eGFR) or increased albuminuria in 2016, an increase of 70% since 1990.! Globally, years of life lost
due to CKD increased by 53% in the same period.! CKD is the 16" most common cause of years of life
lost.? Factors associated with the increased prevalence of CKD include the aging of the population and
the increasing prevalence of diabetes, hypertension, and obesity. The ability to identify people at risk for
CKD may prevent adverse health outcomes associated with CKD. Moreover, even in those who are
diagnosed with CKD, proper management may be hindered by lack of awareness of CKD and its

management among clinicians and uncertainties about the underlying risk of CKD progression.

A kidney failure risk equation may help improve care for patients with established CKD,** but relatively
little work has been performed to develop predictive tools to identify those at increased risk for
developing CKD, defined by reduced eGFR, despite the high lifetime risk of CKD, which is estimated to be
59.1% in the United States.? A simple risk assessment tool that helps clinicians quickly identify patients
at increased risk of reduced eGFR and provides an estimate of the magnitude of risk for reduced eGFR
could lead to better and more targeted surveillance strategies and potentially to better management of
the factors associated with reduced eGFR. In the present study, data from multinational cohorts were

used to develop and evaluate risk prediction equations for CKD defined by reduced eGFR.

METHODS
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This study was approved for use of deidentified data by the institutional review board at the Johns
Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA. The need for informed consent

was waived by the institutional review board.

Participating cohorts

The Chronic Kidney Disease Prognosis Consortium (CKD-PC) includes study cohorts worldwide that were
identified from the general population and from patients at high risk of cardiovascular disease
(eAppendix 1).*° Inclusion criteria required that cohorts included at least 1,000 participants, data on
serum creatinine and albuminuria, and 50 or more events of the outcome of interest. Included cohorts
consisted of prospective studies, clinical trials, and administrative healthcare datasets. Separate risk
models were developed for those with and without diabetes mellitus. The analyses among participants
without diabetes included 31 cohorts, and the analyses among participants with diabetes included 15
cohorts. Within cohorts, eligible participants were aged >18 years old with an eGFR >60 ml/min/1.73 m?
at baseline. Eligible participants had no previous end-stage kidney disease and had at least one serum
creatinine value during follow-up. Because the prevalence and incidence of CKD differ by race/ethnicity,
data on race and ethnicity were analyzed from the participating cohorts. Methods used to determine
race varied from cohort to cohort, but most cohorts used self-report to define race and ethnicity. Data

were collected from April, 1970 through January, 2017.

Procedures

The CKD-EPI creatinine equation was used to calculate eGFR.° In cohorts where the creatinine
measurement was not standardized to isotope dilution mass spectrometry (IDMS), values were
multiplied by 0.95 before eGFR calculation.!! We defined diabetes as fasting glucose >7.0 mmol/L (126

mg/dL), non-fasting glucose 211.1 mmol/L (200 mg/dL), hemoglobin Alc 26.5%, use of glucose lowering
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drugs, or self-reported diabetes. Hypertension was defined as blood pressure >140/90 mm Hg or the use
of anti-hypertensive medications. Smoking was classified as ever smoking vs. never smoking.
Participants with a history of myocardial infarction, coronary revascularization, heart failure, or stroke
were considered to have a history of cardiovascular disease. Measures of albuminuria were restricted to
the urine albumin-to-creatinine ratio. Among participants with diabetes, hemoglobin Alc, oral diabetes

medications, and insulin use at baseline were also recorded.

Outcomes

The outcome of interest was incident eGFR <60 ml/min/1.73 m2. Additional outcomes were eGFR <45
ml/min/1.73 m2, eGFR <30 ml/min/1.73 m?, and 40% decline in eGFR. Participants who developed end-
stage kidney disease, mostly identified by procedure codes or by linkage to national registries before a
qualifying outpatient level of eGFR were also considered to have developed the outcome of interest. In
secondary analyses, we evaluated the risk of confirmed outcomes. Outcomes were defined as confirmed
if there were at least three measures of eGFR (one baseline, two during follow-up) and the first eGFR
below the threshold was confirmed by a second qualifying eGFR between 90 days and 2 years later, or if
the linear slope of eGFR decline crossed the threshold during follow-up (eAppendix 1). In both cases, the

event date was considered the date of the first qualifying eGFR measurement.

Prediction Model Development

The prediction model was built from weighted-average hazard ratios estimated in all participating
cohorts and an adjusted baseline risk estimated in cohorts with frequent outcome assessment. To
estimate the hazard ratios, each study was first analyzed individually, then combined, weighting the
study by the square-root of the number of events in each cohort and capped at 5-times the median

study weight. This method was used to ensure that the largest studies did not dominate the analysis due
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to small within-study variance compared to total variance. We performed complete case analysis,
excluding variables which were missing more than 50% of the time in cohort-specific analyses. Since
variables were often differentially available by diabetes status (e.g., albuminuria, hemoglobin Alc;
missing data shown in eTable 1A and B), models were developed separately for participants with
diabetes and without diabetes. The primary model included demographic variables (age, sex, ethnicity),
eGEFR (linear splines with knot at 90 ml/min/1.73 m?), history of cardiovascular disease, ever smoker,
hypertension, BMI, and albuminuria. The primary model for participants with diabetes also included
diabetes medications (insulin vs. only oral medications vs. none), hemoglobin Alc, and the interaction

between the two.

The albuminuria variable was handled differently for those with vs. without diabetes. For the model
among participants with diabetes, missing albuminuria was treated as a dummy variable with reference
at a urine albumin-to-creatinine ratio of 10 mg/g. For the model among participants without diabetes,
where albuminuria was available only in a minority of individuals, a patch approach was used.'? Models
were fit in all the cohorts using all variables except albuminuria, and data were combined as described
above. The weighted average coefficients were then held constant in cohort-specific models among
participants with measures of albuminuria to obtain a conditional coefficient for albuminuria, which was
then combined for analyses using the weighting described above. This conditional, weighted average
coefficient for albuminuria was applied to the observed level of albuminuria less the expected level of
albuminuria (eTable 2) and combined with the weighted-average coefficients for the other variables in

the final model.

To obtain the adjusted baseline risk for use with the primary model, we held the weighted-average

coefficients constant and fit a multivariable competing risk model in the studies with follow-up for



204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

12

mortality and mean time between creatinine measures of less than one year. The adjusted sub-hazard
was smoothed using a Weibull distribution and the mean was estimated using weights determined by
the method described above. The prediction model then combined the mean adjusted baseline risk with

the weighted-average coefficients.

Evaluation of Model Performance

To evaluate model discrimination, Harrell’s C-statistic was estimated within each cohort and
summarized as the median and interquartile range across studies. Model calibration was plotted using
observed versus predicted risk per decile of predicted risk at 5 years in each cohort with frequent
measures of creatinine (median time between two measurements was approximately 1 year or less and
mean follow-up time was at least two years) and quantified using a regression of the deciles of mean
observed risk on the mean predicted risk in a zero-intercept linear regression model. Calibration was
assessed by visual inspection of the plots (dots showing deciles are close to identity line) and by the
slope of observed to predicted risk being near to 1.3 To summarize calibration, we determined the
number of study populations with an observed risk within 1.25-fold that of the predicted risk (i.e., with a
slope between 0.80 and 1.25 (1/0.8)). These metrics of discrimination and calibration were also
calculated within 9 external validation cohorts selected from OptumLabs® Data Warehouse. eAppendix
1 describes the methods for selecting centers for the nine external validation cohorts. The OptumLabs
Data Warehouse contains deidentified longitudinal health information on patients receiving care in
health systems participating in the OptumLabs collaborative research and innovation center in the U.S.
The database includes people ages 18 to 88 years, from diverse ethnicities and geographical regions
across the United States (eTable 3). The electronic health record (EHR)-derived data include a subset of
EHR data that have been normalized and standardized across health systems into a single database,

including information on demographics, laboratory values, encounter and discharge codes.**
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To compare the newly developed models to existing equations, predicted risks using the newly
developed models were compared with risks calculated using two published equations identified in a
recent review *° (herein referred to as the Chien equation’® and the O’Seaghdha equation?’, respectively
eAppendix 4). The Chien equation was developed in 5,168 Chinese individuals who underwent baseline

health examinations at the National Taiwan University Hospital'®

and annual follow-up examinations
that included measurements of serum creatinine concentration for assessing the outcome of reduced
eGFR. During a median follow-up of 2.2 years, 190 individuals developed CKD. We used the Chien clinical
equation, which included age, body mass index, diastolic blood pressure, and history of type 2 diabetes
and stroke. The O’Seaghdha prediction model was developed in the predominantly white population of
Framingham, Massachusetts, using baseline serum creatinine and a subsequent measure 10 years later.
Among the 2,490 individuals aged 45-64 years included in this study, 229 developed eGFR <60

ml/min/1.73m? at 10 years. The O’Seaghdha model included age, hypertension, diabetes, eGFR

category, and albuminuria .

The performance of the newly developed model, the Chien equation, and the O’Seaghdha equation
were compared in the CKD-PC cohorts that provided individual-level participant data and had the
required variables for all equations. Differences in C-statistics were estimated within all cohorts and
then summarized using random-effects meta-analysis. Brier scores, the mean squared difference
between the predicted risk vs observed binary outcomes, were used to evaluate which risk equation
showed the best calibration within each cohort (eAppendix 4).28 Brier scores were assessed only within
the subset of cohorts with frequent assessments of creatinine. Comparisons of the discrimination and
calibration were also performed within the 9 external validation cohorts from OptumLabs Data

Warehouse.
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All analyses were performed in Stata 15 (StataCorp. 2017. College Station, TX: StataCorp LLC). Statistical

significance was determined using a two-sided test with a threshold p-value of <0.05.

RESULTS

Overall, 5,222,711 participants were included (eTable 4), of whom 781,627 (15.0%) had diabetes.
Baseline characteristics of participants in the 34 individual cohorts are shown in Table 1 according to the
presence or absence of diabetes. The population without diabetes had a mean age of 54 years (SD, 16)
and 38% were female. The population with diabetes had a mean age of 62 years (SD, 11) and 13% were

female, owing primarily to the Veterans Administration cohort, which was 97% male.

Among the 4,441,084 participants without diabetes, there were 660,856 (14.9%) incident cases of eGFR
<60 ml/min/1.73m? during a mean follow-up of 4.2 years, and 374,513 (56.7%) of them were confirmed
by subsequent eGFR measurements. Among the 781,627 participants with diabetes, there were 313,646
(40.1%) incident cases during a mean follow-up of 3.9 years, and 212,246 (67.7%) of them were

confirmed by subsequent eGFR measurements. The number of participants and the total and confirmed

number of events of incident reduced eGFR in the nondiabetic and diabetic cohorts are shown in eTable

Risk factors for reduced eGFR

Weighted-average sub-hazard ratios of major risk factors for incident eGFR <60 ml/min/1.73m? are
shown in Table 2 and for other eGFR thresholds in eTable 6 according to the presence or absence of
diabetes. Older age, female sex, black race, hypertension, history of cardiovascular disease, lower eGFR,

and higher urine albumin-to-creatinine ratio were each significantly associated with incident eGFR <60



276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

15

ml/min/1.73m? in both the diabetic and nondiabetic cohorts. Smoking was significantly associated with
incident eGFR <60 ml/min/1.73m? only in the nondiabetic cohorts, and elevated hemoglobin Alc and
presence and type of diabetes medicines were significantly associated with incident eGFR <60

ml/min/1.73m? in the diabetic cohorts.

Discrimination

Measures of discrimination for the 5-year predicted probability of incident eGFR <60 ml/min/1.73m?,
based on the predictive models, are shown separately for the nondiabetic and diabetic cohorts in eTable
7A. The median C statistic for the 5-year predicted probability of all eGFR events <60 ml/min/1.73m?
was 0.845 (25 — 75 percentile, 0.789-0.890) in the cohorts without diabetes and 0.801 (25% — 75
percentile, 0.750-0.819) in the cohorts with diabetes, reflecting good discrimination. For confirmed
eGFR events <60 ml/min/1.73m?, the median C statistic was 0.869 (25" — 75" percentile, 0.823-0.897) in
the cohorts without diabetes and 0.808 (25" — 75" percentile, 0.794-0.836) in the cohorts with diabetes.

Measures of discrimination for the lower incident eGFR thresholds are shown in eTable 7B.

Predicted absolute risk

Adjusted baseline sub-hazards for eGFR <60 ml/min/1.73m? were computed over time in nondiabetic
and diabetic cohorts with frequent measures of creatinine using baseline covariates from the cohorts
and weighted-average coefficients from the models (Figure 1). The figure illustrates the variability in the
adjusted absolute risk across the cohorts that was unexplained by the covariates included in the models.
Similar findings are shown for the lower incident eGFR thresholds in eFigure 1 for the nondiabetic

cohorts and eFigure 2 for the diabetic cohorts.
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Equations for the 5-year predicted risk of incident eGFR<60 ml/min/1.73m?, based on the predictive
models and the mean baseline sub-hazards, are shown separately for individuals with or without
diabetes in eTable 8 and are available online at http://ckdpcrisk.org/ckdrisk. The predicted 5-year
absolute risk of incident eGFR<60 ml/min/1.73m? in individuals without and with diabetes at three ages
and for various combinations of risk factors are shown in Figure 2 and in greater detail for all three
incident eGFR thresholds in eTables 9 and 10. A wide range of risk was seen, and the level of risk was
strongly associated with the demographic features and co-morbid conditions. The absolute risk was
generally higher in persons with diabetes than in those without and increased with age regardless of the
presence or absence of diabetes. Elevated albuminuria was also significantly associated with the
absolute risk regardless of the presence or absence of diabetes. The 5-year absolute risk for confirmed
eGFR reduction followed the same pattern as for the unconfirmed endpoint, with lower absolute risk for
the confirmed endpoints (eTables 9 and 10). Equations for the 5-year predicted risk of other outcomes

are shown in eTables 11 and 12.

Calibration

Model calibration was assessed visually by plotting observed versus predicted risk per decile of
predicted risk at 5 years in the cohorts with frequent measures of creatinine. Plots for the eGFR <60
ml/min/1.73m? endpoint are shown in eFigure 3 and for the lower eGFR endpoints in eFigures 4 and 5.
The plots reflected the performance of the equations for the primary endpoint in the cohorts, with 9 of
the 13 (69%) study populations showing a slope of observed to predicted risk between 0.80 and 1.25
(eTable 13). Calibration was generally better for the eGFR <60 ml/min/1.73m? endpoint compared to
the lower eGFR endpoints, where it was poor in some cohorts (eTables 14-15). For example, for eGFR

<45 ml/min/1.73 m?, just 5 of 13 (38%) study populations showed a slope between 0.80 and 1.25. For
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eGFR <30 ml/min/1.73 m?, just 4 out of 11 (36%) study populations showed a slope between 0.80 and

1.25. Calibration, by design, was best in the development cohorts with the highest number of events.

External validation

Model discrimination was tested in 18 study populations in 9 external validation cohorts (N=2,253,540,
eTable 16). There were 288,462 events over 4.1 years of follow-up in the population without diabetes
and 78,697 events over 3.5 years of follow-up in the population with diabetes. Discrimination was
similar to that observed in the development cohorts. The median C statistic for the 5-year predicted
probability of all eGFR events <60 ml/min/1.73m? was 0.84 (25" — 75" percentile, 0.83-0.87) in the
population without diabetes and 0.81 (25 — 75 percentile, 0.80-0.82) in the population with diabetes
(eTable 17). Calibration analysis showed that 16 out of 18 (89%) study populations with a slope between
0.80 and 1.25 (eFigure 6, eTable 18). Discrimination and calibration for the lower eGFR endpoints are
shown in eFigures 7-8 and eTables 17-18. For example, for eGFR <45 ml/min/1.73 m?, 15 out of 18
(83%) of study populations showed a slope between 0.80 and 1.25. For eGFR <30 ml/min/1.73 m?, 11
out of 18 (61%) study populations showed a slope between 0.80 and 1.25. Differences in calibration
could not be explained by differences in mean baseline characteristics in the underlying study

populations.

Comparison to existing equations

The newly developed model for eGFR <60 ml/min/1.73m? in the absence of diabetes had better
discrimination than the Chien equation (random-effects meta-analyzed difference in C statistic, 0.094,
95% Cl: 0.071-0.117) and the O’Seaghdha equation (random-effects meta-analyzed difference in C
statistics, 0.020, 95% Cl: 0.015-0.025) when compared in the CKD-PC cohorts. Similarly, the Brier score

was lower using the newly developed equation in the cohorts with frequent measures of creatinine,
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indicating superior calibration for the newly developed equation (eTable 19). In the presence of
diabetes, the newly developed model had better discrimination than the Chien equation (random-
effects meta-analyzed difference in C statistic, 0.107, 95% Cl: 0.087-0.128) and the O’Seaghdha equation
(random-effects meta-analyzed difference in C statistics, 0.037, 95% Cl: 0.030-0.044) and lower Brier
scores in two out of three cohorts with frequent measures of creatinine. When evaluated in the 9
external validation cohorts, model discrimination and calibration were also better using the newly

developed equations compared to the Chien and O’Seaghdha equations (eTable 20).

DISCUSSION

Risk prediction models were developed that facilitated prediction of the 5-year probability of reduced
eGFR in diverse populations of men and women with variable ages and ethnicity. Models were
developed separately for people with vs. without diabetes. Readily available demographic, clinical, and
laboratory variables were used in these risk models, so that risk calculators from these models could
conceivably be added to electronic health records to identify patients at increased risk for developing
reduced eGFR. Further study is needed to determine whether these risk equations can improve care. For
example, future study could assess whether focusing resources on patients at highest risk of developing
chronic kidney disease improves blood pressure control and/or weight loss. Future study might also
determine whether prescribing medications to improve albuminuria or control diabetes might prevent

occurrence of reduced eGFR in those at risk.

Several prediction models of CKD exist for use in the general population.6171920 Equations previously
developed to identify people at risk for incident eGFR <60 ml/min/1.73m?included the Chien equation
and the O’Seaghdha equation, both of which have been externally validated.’>?” External validation of

the Chien clinical model was previously done in 3,205 Chinese adults from the Chin-Shan Community
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Cardiovascular Cohort. Moderate discrimination was observed for the clinical prediction model in the
development cohort (c-statistic = 0.77), but the discriminatory power of the model was greatly reduced
in the external validation cohort (c-statistic = 0.67).2® The O’Seaghdha risk score was validated in 1,777
individuals from the ARIC study (c-statistic = 0.79 in Framingham and 0.74 in ARIC).Y” These prior studies
did not develop separate equations for those with vs. without diabetes. The present study, which
developed scores separately for people with vs. without diabetes, demonstrated higher C-statistics and
better calibration than both the clinical Chien and the O’Seaghdha equations. This was true in the CKD-

PC cohorts used in development of the equations as well as in the 9 external validation cohorts.

Risk prediction models that estimate the absolute risk of specific adverse health outcomes have become
increasingly popular clinical decision-making tools in recent years, and novel approaches to analyzing
existing data are emerging that may enhance prediction.?! Several models have been developed for
estimating the risk of prevalent and incident CKD and end-stage kidney disease,*16:17/19:20.22-24 bt eyen
those with good discriminative performance have not always performed well in cohorts of people
outside the original derivation cohort.’ In our study, we show that the incidence of low eGFR varies
across settings, even after adjustment for variable distribution of risk factors, providing an explanation

for differences in calibration in prior studies.

Calibration is an essential aspect of risk prediction, particularly when absolute risk thresholds are used
to drive clinical care. A tool that overestimates risk may result in unnecessary treatment, whereas one
that underestimates risk may delay optimal management. By design, calibration in the development

cohorts in our study was set to the overall weighted risk. Hence, we focused on calibration on external
cohorts for an unbiased assessment. Surprisingly, in external validation in over 2 million people, model

calibration was even better than that in the development cohorts, suggesting that it may generalize well
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to US electronic health systems like those represented in OptumLabs Data Warehouse. Other strengths
of this study include the large sample sizes of the nondiabetic and diabetic cohorts, and the broad
clinical, geographic, and ethnic diversity of the individuals in those cohorts. However, we note that
calibration of the developed risk equations may be poor in populations that differ substantially in the

adjusted incidence of reduced eGFR or in which ascertainment of reduced eGFR is more or less sensitive.

Limitations

This study has several limitations. First, the absence of albuminuria data in most nondiabetic cohorts
included in this study required that a statistical patch derived from nondiabetic cohorts with
albuminuria data be applied to the remaining cohorts in order to estimate how inclusion of albuminuria
altered the models. This approach allows valid estimation of risk even in the absence of albuminuria,
although clinical assessment of alouminuria improved risk estimation and detection of early stage CKD
defined by elevated albuminuria (A-stages) in the absence of reduced kidney function (G stages 1-2).%
Second, the risk equations developed in this study incorporated routinely collected demographic,
clinical, and laboratory data and their predictive accuracy might be enhanced by incorporating other
variables, including genotype data or newly identified biomarkers of early CKD.?® Third, the risk
prediction equations developed in this study were intended to identify persons at increased risk of an
intermediate health outcome. The risks of progression from CKD to kidney failure, cardiovascular
disease, or death were not assessed by these equations. Fourth, no minimum change in eGFR was
required in the primary predictive model to become a case of CKD, so someone with a baseline eGFR of
61 ml/min/1.73m? and a follow-up eGFR of 59 ml/min/1.73m? would be considered to have the
outcome of interest. Fifth, calibration varied across setting, with particularly poor performance in some

of the research cohorts. The models for eGFR <45 and eGFR<30 ml/min/1.73 m? were poorly calibrated
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in many of the development cohorts, which may be due in part to the low number of events and

relatively short follow-up time.

Conclusions
Equations for predicting risk of incident chronic kidney disease were developed in over 5 million people
from 34 multinational cohorts and demonstrated high discrimination and variable calibration in diverse

populations.
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Table 1. Baseline characteristics of the participants in the 31 nondiabetic and 15 diabetic cohorts.

tu ountr e emale . ertension mokin
Study Country N Ag Female /m?r?/FlR73m2) H'Sg’/g of  Lypertension Smoking  BMI
Nondiabetic cohorts
ARIC USA 12757 54 (6) 7082 (56%) 103 (14) 980 (8%) 4437 (35%) 7367 (58%) 27 (5)
AusDiab Australia 6281 50(12) 3471 (55%) 88 (14) 306 (5%) 1580 (25%) 2528 (41%) 27 (5)
Beijing China 948 59 (9) 496 (52%) 85(12) 127 (13%) 363 (38%) 321 (34%) 25 (3)
CARE Canada 2923 57(9) 343 (12%) 80 (13) 2923 (100%) 2432 (83%) 2332 (80%) 28(7)
CHS USA 2170 73 (4) 1341 (62%) 77 (11) 409 (19%) 1280 (59%) 1122 (53%) 27 (5)
CIRCS Japan 10022 54(9) 6275 (63%) 90 (14) 97 (1%) 3353 (33%) 3507 (35%) 23 (3)
ESTHER Germany 3394 61 (6) 1885 (56%) 92 (15) 458 (13%) 2213 (65%) 1548 (47%) 27 (4)
Framingham USA 2353 58(9) 1290 (55%) 91 (16) 180 (8%) 828 (35%) 368 (16%) 28 (5)
11064
Geisinger USA 229448 50 (16) 132677 (58%) 95 (18) 23403 (10%) 113953 (50%) (4%;)0 30 (7)
GLOMMS 2 UK 24321 61(14) 13598 (56%) 81 (15) 1962 (8%) 910 (4%) NA NA
Gubbio Italy 1249 54(6) 714 (57%) 85 (11) 44 (4%) 443 (35%) 688 (55%) 28 (4)
HUNT Norway 34430 46 (13) 19114 (56%) 102 (15) 1170 (3%) 12377 (36%) %57??‘23 26 (4)
IPHS Japan 70557  60(10) 47934 (68%) 86 (12) 3603 (5%) 33626 (48%) g;’;? 23 (3)
JHS USA 2164 48 (11) 1312 (61%) 102 (17) 94 (4%) 885 (41%) 596 (28%) 31(7)
JSHC China 461797 63(8) 279934 (61%) 94 (11) 34567 (9%) 193996 (42%) 6(5122;; 23 (3)
231
Maccabi Israel 939309 43 (15) 546440 (58%) 104 (17) 55138 (6%) 213398 (23%) (3;5?/35 27 (5)
MESA USA 4954 61 (10) 2623 (53%) 86 (13) 1 (0%) 2051 (41%) 2600 (53%) 28 (5)
Mt Sinai BioMe ~ USA 14590  48(14) 8998 (62%) 93 (19) 722 (5%) 6385 (44%) 3910 (28%) 29 (7)
Ohasama Japan 2346 60 (10) 1483 (63%) 98 (11) 91 (4%) 832 (35%) 349 (19%) 24 (3)
Okinawa8393 Japan 1624 50(10) 957 (59%) 100 (13) 0 (0%) NA NA 24 (3)
Pima USA 2733 28 (11) 1626 (59%) 125 (13) NA 272 (10%) 793 (47%) 33 (8)
PREVEND Netherlands 5977 49 (12) 3057 (51%) 97 (14) 247 (4%) 1773 (30%) 4160 (70%) 26 (4)
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Rancho
Bernardo
RCAV
RSl
SCREAM
SEED

Taiwan MJ

TLGS
Tromso
ULSAM

Diabetic
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ADVANCE
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Beijing
Geisinger
HUNT
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RCAV
SCREAM
SEED
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Iran
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Sweden
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USA

Norway
USA

Israel

USA
USA
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Zealand
USA
USA
Sweden
Singapore

639

1765629

2292
716952
2358

101216

8502
6007
1142

4441084

9339
427
343

34463

1564
390

72480

659
2652

14819

933
607132
34307
1029

64 (10)

59 (13)
56 (6)
52 (17)
54 (9)

41 (12)

37 (13)
58 (10)
50 (1)

54 (16)

66 (6)
59 (11)
62 (9)
58 (15)
54 (12)
54 (10)
60 (13)
63 (9)
54 (13)
58 (13)
43 (14)
63 (10)
60 (16)
58 (9)

369 (58%)

133822 (8%)
1333 (58%)
392827 (55%)
1246 (53%)

52658 (52%)

4753 (56%)
3522 (59%)
0 (0%)
1673180
(38%)

3774 (40%)
189 (44%)
168 (49%)

16842 (49%)
709 (45%)
241 (62%)

32972 (45%)
304 (46%)
1598 (60%)

7152 (48%)
577 (62%)
20241 (3%)

14224 (41%)
508 (49%)

75 (11)

85 (15)
87 (12)
95 (17)
88 (14)

91 (15)

81 (13)
95 (12)
98 (10)

93 (17)

83 (13)
84 (13)
85 (12)
93 (18)
95 (14)
101 (18)
92 (15)
90 (15)
91 (19)
86 (16)
114 (17)
83 (15)
91 (17)
88 (15)

49 (8%) 232 (36%) 354 (56%)

256353 (15%) 1196576 (68%)  NA

126 (5%)  1375(60%) 1572 (69%)
40554 (6%) 177249 (25%) NA
156 (7%) 1164 (50%) 700 (30%)
26037
[v) 0,
2474 (2%) 16560 (16%) (28%)
171 (2%) 1404 (17%) 1839 (22%)
283 (5%)  3183(53%) 3877 (65%)
5 (0%) 416 (36%) NA
509588
0, o)
426693 (10%) 1996070 (45%) (26%)
2235 (24%) 8003 (86%) 4024 (43%)

70 (16%) 287 (67%) 205 (48%)
80 (23%) 184 (54%) 127 (37%)
17563
8606 (25%) 27251 (79%)  (52%)

130 (8%) 932 (60%) 892 (57%)
46 (12%) 310 (79%) 131 (34%)
21733
18147 (25%) 54586 (75%)  (30%)

0 (0%)
511 (19%)

455 (69%)
2013 (76%)

343 (52%)
923 (37%)

2260 (15%) 10197 (82%) 6469 (44%)

NA 335(36%) 291 (40%)
157611 (26%) 551356 (91%) NA
8041 (23%) 20408 (59%) NA

151 (15%) 742 (72%) 311 (30%)

26 (4)

29 (6)
27 (4)
NA
26 (4)

23 (3)

26 (5)
26 (4)
25 (3)

27 (6)

28 (5)
30 (6)
25 (4)
34 (8)
28 (5)
35 (8)
31 (6)
31 (6)
32(8)
32 (7)
34 (8)
32(6)
NA
28 (5)
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ZODIAC Netherlands 1090 63 (11) 522 (48%) 77 (12) 310 (28%) 794 (73%)  249(23%) 29(5)
53261

2

781627 62(11) 100021 (13%) 85 (15) 198198 (25%) 677853 (87%) (38%) 32(6)

Values are mean (SD) or percent of total N. Abbreviations: BMI, body mass index; CVD, cardiovascular disease; eGFR, estimated glomerular
filtration rate; NA, not available. Racial distributions of the cohorts are available in eTable 4 and the citations for each study are available in
eAppendix 2.

* Participants are from Australia, Canada, China, Czech Republic, Estonia, France, Germany, Hungary, India, Ireland, Italy, Lithuania, Malaysia,
Netherlands, New Zealand, Philippines, Poland, Russia, Slovakia, and United Kingdom.
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Table 2. Weighted-average sub-hazard ratios of major risk factors for incident eGFR<60 ml/min/1.73m?
in the nondiabetic and diabetic cohorts.

Sub-Hazard Ratios (95% Cl) for
Incident eGFR<60mI/min/1.73m?

Non-diabetic Diabetic model

Risk factors model
Age, per 5y 1.29(1.27, 1.32) 1.14 (1.13, 1.15)
Female 1.20(1.18, 1.22) 1.15(1.11, 1.18)
Black 1.20(1.13, 1.27) 1.10(1.02, 1.18)

eGFR 60-90, per -5 ml
eGFR 90+, per -5 ml

History of CVD
Ever smoker
Hypertension
BMI, per 5 kg/m?

1.58 (1.57, 1.59)
1.37 (1.34, 1.41)
1.22 (1.18, 1.26)
1.13 (1.10, 1.16)
1.43 (1.40, 1.46)
1.07 (1.05, 1.08)

1.43 (1.41, 1.44)
1.16 (1.14, 1.19)
1.21(1.17, 1.24)
1.00 (0.96, 1.04)
1.44 (1.39, 1.50)
1.05 (1.04, 1.07)

ACR, per 10-fold increase 1.42 (1.37, 1.48)t 1.45(1.42, 1.49)

HbA1c (for oral DM meds), per 1% 1.06 (1.05, 1.07)
Insulin vs. oral DM meds (at 7% hbalc) 1.11(1.05, 1.19)
No meds vs. oral DM meds (at 7% hbalc) 0.86 (0.83, 0.89)
Interaction: HbA1lc * insulin vs. oral DM meds, per 1% 1.02 (1.00, 1.05)
Interaction: HbAlc * No meds vs. oral DM meds, per 1% 1.04 (1.02, 1.06)
ACR missing indicator (set ACR=10) 0.96 (0.93, 1.00)

tACR was modeled using a patch in the non-diabetes model in which the coefficient for ACR was
estimated in the population with available ACR with the other coefficients fixed. The model allows for
prediction when ACR is missing.

eTables 9 and 10 provide absolute risk and risk difference scenarios.

Abbreviations: ACR, urine albumin-creatinine ratio; BMI, body mass index; CVD, cardiovascular disease;
eGFR, estimated glomerular filtration rate; HbAlc, hemoglobin Alc.
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Figure 1. Variation in baseline adjusted competing risk of incident eGFR<60 ml/min/1.73m? in
nondiabetic (A and C) and diabetic (B and D) cohorts with frequent measures of serum creatinine
concentration. All events (confirmed and unconfirmed) are shown in Panels A and B and confirmed
events are shown in Panels C and D.

Numbers after the cohort name in the key indicate the mean follow-up time in years. Each line
represents the adjusted baseline risk in an individual cohort. The risk was determined by holding the
weighted-average coefficients constant and fitting a multivariable competing risk model in each study.
The adjusted sub-hazard was smoothed using a Weibull distribution. The pooled line represents the

weighted mean which is used in the prediction equation.
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Figure 2. Predicted 5-year absolute risk of incident eGFR <60 ml/min/1.73m? is shown for various
scenarios in three ages and albuminuria categories in nondiabetic and diabetic individuals. All 5-year
risks were computed for hypothetical individuals with a baseline eGFR of 90 ml/min/1.73m?2. For the 5-
year predicted risk in a hypothetical individual with diabetes, the hemoglobin Alc was also set to 7.7%
and the individual was assumed to be receiving an oral diabetes medicine. Scenarios: Sex: male/female,
Ethnicity: non-black/black, History of CVD: yes/no, Smoker: yes/no, Hypertension: yes/no, BMI: 25/35
kg/m?, ACR: not available (N/A; equation without ACR)/50/500 mg/g (non-DM); 5/50/500 mg/g (DM).
Abbreviations: ACR, urine albumin-creatinine ratio; BMI, body mass index; CVD, cardiovascular disease;
DM, diabetes mellitus.

*Each column contains 64 dots representing 64 hypothetical scenarios. The dots are shaded from light
to dark based on the number of risk factors present, scaled from 0 to 4 based on the presence or

absence of CVD, smoking, hypertension, and BMI 35 kg/m?.



