898 research outputs found

    Laser microprobe study of cosmic dust (IDPs) and potential source materials

    Get PDF
    The study of cosmic dust or interplanetary dust particles (IDP) can provide vital information about primitive materials derived primarily from comets and asteroids along with a small unknown fraction from the nearby interstellar medium. The study of these particles can enhance our understanding of comets along with the decoding of the history of the early solar system. In addition the study of the cosmic dust for IDP particles can assist in the elucidation of the cosmic history of the organogenic elements which are vital to life processes. Studies to date on these particles have shown that they are complex, heterogeneous assemblages of both amorphous and crystalline components. In order to understand the nature of these particles, any analytical measurements must be able to distinguish between the possible sources of these particles. A study was undertaken using a laser microprobe interfaced to a quadrupole mass spectrometer for the analysis of the volatile components present in cosmic dust particles, terrestrial contaminants present in the upper atmosphere, and primitive carbonaceous chondrites. From the study of the volatiles released from the carbonaceous materials it is hoped that one could distinguish between components and sources in the IDP particles analyzed. The technique is briefly described and results for the CI, CM, and CV chondrites and cosmic dust particle W7027B8 are presented

    The stellar halo of the Galaxy

    Get PDF
    Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes. Full-resolution version available at http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd

    Cardiothoracic CT: one-stop-shop procedure? Impact on the management of acute pulmonary embolism

    Get PDF
    In the treatment of pulmonary embolism (PE) two groups of patients are traditionally identified, namely the hemodynamically stable and instable groups. However, in the large group of normotensive patients with PE, there seems to be a subgroup of patients with an increased risk of an adverse outcome, which might benefit from more aggressive therapy than the current standard therapy with anticoagulants. Risk stratification is a commonly used method to define subgroups of patients with either a high or low risk of an adverse outcome. In this review the clinical parameters and biomarkers of myocardial injury and right ventricular dysfunction (RVD) that have been suggested to play an important role in the risk stratification of PE are described first. Secondly, the use of more direct imaging techniques like echocardiography and CT in the assessment of RVD are discussed, followed by a brief outline of new imaging techniques. Finally, two risk stratification models are proposed, combining the markers of RVD with cardiac biomarkers of ischemia to define whether patients should be admitted to the intensive care unit (ICU) and/or be given thrombolysis, admitted to the medical ward, or be safely treated at home with anticoagulant therapy

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Anatomy of the sign-problem in heavy-dense QCD

    Get PDF
    QCD at finite densities of heavy quarks is investigated using the density-of-states method. The phase factor expectation value of the quark determinant is calculated to unprecedented precision as a function of the chemical potential. Results are validated using those from a reweighting approach where the latter can produce a significant signalto-noise ratio. We confirm the particle–hole symmetry at low temperatures, find a strong sign problem at intermediate values of the chemical potential, and an inverse Silver Blaze feature for chemical potentials close to the onset value: here, the phase-quenched theory underestimates the density of the full theory

    Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector

    Get PDF
    A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5  fb[superscript −1] of proton-proton collisions data at √s=7  TeV and 20.3  fb[superscript −1] at √s=8  TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be μ=1.17±0.27 at the value of the Higgs boson mass measured by ATLAS, m[subscript H]=125.4  GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of m[subscript H]. They are found to be μ[subscript ggF]=1.32±0.38, μ[subscript VBF]=0.8±0.7, μ[subscript WH]=1.0±1.6, μ[subscript ZH]=0.1[superscript +3.7 subscript −0.1], and μ[subscript t [bar over t] H] =1.6[superscript +2.7 subscript −1.8], for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a W or Z boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.European Organization for Nuclear ResearchUnited States. Dept. of EnergyNational Science Foundation (U.S.)Brookhaven National Laborator

    Search for the direct production of charginos and neutralinos in final states with tau leptons in √s=13 TeV collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with at least two hadronically decaying tau leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of 36.1 fb−1, recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13TeV.Nosignificant deviation from the expected Standard Model background is observed. Limits are derived in scenarios of ˜χ+1 ˜χ−1 pair production and of ˜χ±1 ˜χ02 and ˜χ+1 ˜χ−1 production in simplified models where the neutralinos and charginos decay solely via intermediate left-handed staus and tau sneutrinos, and the mass of the ˜ τL state is set to be halfway between the masses of the ˜χ±1 and the ˜χ01. Chargino masses up to 630 GeV are excluded at 95% confidence level in the scenario of direct production of ˜χ+1 ˜χ−1 for a massless ˜χ01. Common ˜χ±1 and ˜χ02 masses up to 760 GeV are excluded in the case of production of ˜χ±1 ˜χ02 and ˜χ+1 ˜χ−1 assuming a massless ˜χ01. Exclusion limits for additional benchmark scenarios with large and small mass-splitting between the ˜χ±1 and the ˜χ01 are also studied by varying the ˜ τL mass between the masses of the ˜χ±1 and the ˜χ01

    Measurement of the W±Z boson pair-production cross section in pp collisions at √s=13TeV with the ATLAS detector

    Get PDF
    published_or_final_versio
    corecore