84 research outputs found

    Multi-gene panel testing for hereditary cancer predisposition in unsolved high-risk breast and ovarian cancer patients.

    Get PDF
    PurposeMany women with an elevated risk of hereditary breast and ovarian cancer have previously tested negative for pathogenic mutations in BRCA1 and BRCA2. Among them, a subset has hereditary susceptibility to cancer and requires further testing. We sought to identify specific groups who remain at high risk and evaluate whether they should be offered multi-gene panel testing.MethodsWe tested 300 women on a multi-gene panel who were previously enrolled in a long-term study at UCSF. As part of their long-term care, all previously tested negative for mutations in BRCA1 and BRCA2 either by limited or comprehensive sequencing. Additionally, they met one of the following criteria: (i) personal history of bilateral breast cancer, (ii) personal history of breast cancer and a first or second degree relative with ovarian cancer, and (iii) personal history of ovarian, fallopian tube, or peritoneal carcinoma.ResultsAcross the three groups, 26 women (9%) had a total of 28 pathogenic mutations associated with hereditary cancer susceptibility, and 23 women (8%) had mutations in genes other than BRCA1 and BRCA2. Ashkenazi Jewish and Hispanic women had elevated pathogenic mutation rates. In addition, two women harbored pathogenic mutations in more than one hereditary predisposition gene.ConclusionsAmong women at high risk of breast and ovarian cancer who have previously tested negative for pathogenic BRCA1 and BRCA2 mutations, we identified three groups of women who should be considered for subsequent multi-gene panel testing. The identification of women with multiple pathogenic mutations has important implications for family testing

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    The heat shock response in neurons and astroglia and its role in neurodegenerative diseases

    Full text link

    Concerted potent humoral immune responses to autoantigens are associated with tumor destruction and favorable clinical outcomes without autoimmunity

    No full text
    PURPOSE: The therapeutic importance of immune responses against single versus multiple antigens is poorly understood. There also remains insufficient understanding whether responses to one subset of antigens are more significant than another. Autoantibodies are frequent in cancer patients. They can pose no biological significance or lead to debilitating paraneoplastic syndromes. Autoreactivity has been associated with clinical benefits, but the magnitude necessary for meaningful results is unknown. Autologous tumor cells engineered to secrete granulocyte macrophage colony-stimulating factor generate immune infiltrates in preexisting metastases with associated tumor destruction. We sought to identify targets of responses from this vaccination strategy. EXPERIMENTAL DESIGN: Postvaccination sera used in screening a cDNA expression library prepared from a densely infiltrated metastasis of a long-term surviving melanoma patient identified several autoantigens. Additional autoantigens were identified through similar screenings in non-small cell lung cancer and murine models, and proteins implicated in cancer propagation. ELISAs for several targets were established using recombinant proteins, whereas others were evaluated by petit serologies. RESULTS: Eleven gene products were identified through serologic screening from two patients showing highly favorable clinical outcomes. A subset of antigens revealed significant changes in antibody titers compared with weak responses to other proteins. Time course analyses showed coordinated enhanced titers against several targets as a function of vaccination in responding patients. CONCLUSIONS: This study shows the range of biologically significant antigens resulting from a whole-cell vaccine. Targets include autoantigens that are components of cell cycle regulation. Potent antibody responses against multiple autoantigens are associated with effective tumor destruction without clinical autoimmunity
    corecore