23 research outputs found

    Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management

    Get PDF
    Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density lipoprotein cholesterol (HDL-C) as cardiovascular risk factors, and (ii) to advise on therapeutic strategies for management. Current evidence supports a causal association between elevated TRL and their remnants, low HDL-C, and cardiovascular risk. This interpretation is based on mechanistic and genetic studies for TRL and remnants, together with the epidemiological data suggestive of the association for circulating triglycerides and cardiovascular disease. For HDL, epidemiological, mechanistic, and clinical intervention data are consistent with the view that low HDL-C contributes to elevated cardiovascular risk; genetic evidence is unclear however, potentially reflecting the complexity of HDL metabolism. The Panel believes that therapeutic targeting of elevated triglycerides (≥1.7 mmol/L or 150 mg/dL), a marker of TRL and their remnants, and/or low HDL-C (<1.0 mmol/L or 40 mg/dL) may provide further benefit. The first step should be lifestyle interventions together with consideration of compliance with pharmacotherapy and secondary causes of dyslipidaemia. If inadequately corrected, adding niacin or a fibrate, or intensifying LDL-C lowering therapy may be considered. Treatment decisions regarding statin combination therapy should take into account relevant safety concerns, i.e. the risk of elevation of blood glucose, uric acid or liver enzymes with niacin, and myopathy, increased serum creatinine and cholelithiasis with fibrates. These recommendations will facilitate reduction in the substantial cardiovascular risk that persists in patients with cardiometabolic abnormalities at LDL-C goal

    Oxygenase Coordination Is Required for Morphological Transition and the Host-Fungus Interaction of \u3ci\u3eAspergillus flavus\u3c/i\u3e

    Get PDF
    Oxylipins, a class of oxygenase-derived unsaturated fatty acids, are important signal molecules in many biological systems. Recent characterization of an Aspergillus flavus lipoxygenase gene, lox, revealed its importance in maintaining a density-dependent morphology switch from sclerotia to conidia as population density increased. Here, we present evidence for the involvement of four more oxylipingenerating dioxygenases (PpoA, PpoB, PpoC, and PpoD) in A. flavus density-dependent phenomena and the effects of loss of these genes on aflatoxin production and seed colonization. Although several single mutants showed alterations in the sclerotia-to-conidia switch, the major effect was observed in a strain downregulated for all five oxygenases (invert repeat transgene [IRT] strain IRT4 = ppoA, ppoB, ppoC, ppoD, and lox). In strain IRT4, sclerotia production was increased up to 500-fold whereas conidiation was decreased down to 100-fold and the strain was unable to switch into conidial production. Aflatoxin (AF) production for all mutant strains and the wild type was greatest at low population densities and absent in high populations except for strain IRT4, which consistently produced high levels of the mycotoxin. Growth on host seed by both IRT4 and IRT2 (downregulated in ppoA, ppoB, and ppoD) was marked by decreased conidial but increased AF production. We propose that A. flavus oxygenases and the oxylipins they produce act in a highly interdependent network with some redundancy of biological function. These studies provide substantial evidence for oxylipin-based mechanisms in governing fungus-seed interactions and in regulating a coordinated quorum-sensing mechanism in A. flavus

    Fatty acid-and retinol-binding protein, Mj-FAR-1 induces tomato host susceptibility to root-knot nematodes

    Get PDF
    Plant-parasitic nematodes produce at least one structurally unique class of small helix-rich retinol-and fatty-acid-binding proteins that have no counterparts in their plant hosts. Herein we describe a protein of the plant-parasitic root-knot nematode Meloidogyne javanica, which is a member of the nematode-specific fatty-acid- and retinol-binding (Mj-FAR-1) family of proteins. The mj-far-1 mRNA was detected through M. javanica pre-parasitic J2s, migratory and sedentary parasitic stages by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Immunolocalization assays demonstrate that the FAR protein of Meloidogyne is secreted during sedentary stages, as evidenced by the accumulation of FAR at the nematode cuticle surface and along the adjacent host root tissues. Tomato roots constitutively expressing mj-far-1 demonstrated an increased susceptibility to root-knot nematodes infection as observed by accelerated gall induction and expansion, accompanied by a higher percentage of nematodes developing into mature females compared to control roots. RNA interference assays that expressed double-stranded RNA complementary to mj-far-1 in transgenic tomato lines specifically reduced nematode infection levels. Histological analysis of nematode-infested roots indicated that in roots overexpressing mj-far-1, galls contained larger feeding cells and might support a faster nematode development and maturation. Roots overexpressing mj-far-1 suppressed jasmonic acid responsive genes such as the proteinase inhibitor (Pin2) and c-thionin, illustrating the possible role of Mj-FAR-1 in manipulating the lipid based signaling in planta. This data, suggests that Meloidogyne FAR might have a strategic function during the interaction of the nematode with its plant host. Our study present the first demonstration of an in planta functional characterization and localization of FAR proteins secreted by plant-parasitic nematodes. It provides evidence that Mj-FAR-1 facilitates infection most likely via the manipulation of host lipid-based defenses, as critical components for a successful parasitism by plant-parasitic nematodes

    Identifying Diagnostic Peptides for Lyme Disease through Epitope Discovery

    No full text
    Serum antibodies from patients with Lyme disease (LD) were used to affinity select peptide epitopes from 12 large random peptide libraries in phage display format. The selected peptides were surveyed for reactivity with a panel of positive sera (from LD patients) and negative sera (from subjects without LD), thus identifying 17 peptides with a diagnostically useful binding pattern: reactivity with at least three positive sera and no reactivity with any of the negative sera. The peptides define eight sequence motifs, none of which can be matched convincingly with segments of proteins from Borrelia burgdorferi, the LD pathogen; evidently, then, they are “mimotopes,” mimicking natural pathogen epitopes without matching contiguous amino acids of pathogen proteins. Peptides like these could be the basis of a new diagnostic enzyme-linked immunosorbent assay for LD, with sufficient specificity and sensitivity to replace expensive immunoblotting tests that are currently required for definitive serological diagnosis. Moreover, the method used to discover these peptides did not require any knowledge of the pathogen and involved generic procedures that are applicable to almost any infectious disease, including emerging diseases for which no pathogen has yet been identified

    Spirochetal infections

    No full text

    Introduction

    No full text

    Bibliography

    No full text
    corecore