6,372 research outputs found

    The generalized parton distributions of the nucleon in the NJL model based on the Faddeev approach

    Full text link
    We study the generalized parton distributions, including the helicity-flip ones, using Nambu-Jona-Lasinio model based on a relativistic Faddeev approach with `static approximation'. Sum rules relating the generalized parton distributions to nucleon electromagnetic form factors are satisfied. Moreover, quark-antiquark contributions in the region ξ<x<ξ-\xi<x<\xi are non-vanishing. Our results are qualitatively similar to those calculated with Radyushkin's double distribution ansatz using forward parton distribution functions calculated in the NJL model as inputs.Comment: 35 pages, 15 figure

    Using R via PHP for Teaching Purposes: R-php

    Get PDF
    This paper deals with the R-php statistical software, that is an environment for statistical analysis, freely accessible and attainable through the World Wide Web, based on R. Indeed, this software uses, as "engine" for statistical analyses, R via PHP and its design has been inspired by a paper of de Leeuw (1997). R-php is based on two modules: a base module and a point-and-click module. R-php base allows the simple editing of R code in a form. R-php point-and-click allows some statistical analyses by means of a graphical user interface (GUI): then, to use this module it is not necessary for the user to know the R environment, but all the allowed analyses can be performed by using the computer mouse. We think that this tool could be particularly useful for teaching purposes: one possible use could be in a University computer laboratory to permit a smooth approach of students to R.

    A Software Tool for the Exponential Power Distribution: The normalp Package

    Get PDF
    In this paper we present the normalp package, a package for the statistical environment R that has a set of tools for dealing with the exponential power distribution. In this package there are functions to compute the density function, the distribution function and the quantiles from an exponential power distribution and to generate pseudo-random numbers from the same distribution. Moreover, methods concerning the estimation of the distribution parameters are described and implemented. It is also possible to estimate linear regression models when we assume the random errors distributed according to an exponential power distribution. A set of functions is designed to perform simulation studies to see the suitability of the estimators used. Some examples of use of this package are provided.

    X-ray emission from star-forming galaxies - I. High-mass X-ray binaries

    Full text link
    Based on a homogeneous set of X-ray, infrared and ultraviolet observations from Chandra, Spitzer, GALEX and 2MASS archives, we study populations of high-mass X-ray binaries (HMXBs) in a sample of 29 nearby star-forming galaxies and their relation with the star formation rate (SFR). In agreement with previous results, we find that HMXBs are a good tracer of the recent star formation activity in the host galaxy and their collective luminosity and number scale with the SFR, in particular, Lx~2.6 10^{39} SFR. However, the scaling relations still bear a rather large dispersion of ~0.4 dex, which we believe is of a physical origin. We present the catalog of 1057 X-ray sources detected within the D25D25 ellipse for galaxies of our sample and construct the average X-ray luminosity function (XLF) of HMXBs with substantially improved statistical accuracy and better control of systematic effects than achieved in previous studies. The XLF follows a power law with slope of 1.6 in the logLx~35-40 luminosity range with a moderately significant evidence for a break or cut-off at Lx~10^{40} erg/s. As before, we did not find any features at the Eddington limit for a neutron star or a stellar mass black hole. We discuss implications of our results for the theory of binary evolution. In particular we estimate the fraction of compact objects that once upon their lifetime experienced an X-ray active phase powered by accretion from a high mass companion and obtain a rather large number, fx~0.2 (0.1 Myr/tau_x) (tau_x is the life time of the X-ray active phase). This is ~4 orders of magnitude more frequent than in LMXBs. We also derive constrains on the mass distribution of the secondary star in HMXBs.Comment: 23 pages, 14 figures, 5 tables, MNRAS - Accepted 2011 September 2

    The X-ray emission of the Crab-like pulsar PSR J0537-6910

    Full text link
    In this paper we present some preliminary result on the spectral and timing analysis of the X-ray pulsed emission from the 16 ms pulsar PSR J0537-6910 in the energy range 0.1--30 keV, based on archival BeppoSAX and RossiXTE observations. This pulsar, discovered by Marshall et al.(1998) in the LMC field with RXTE, is the fastest spinning pulsar associated with a supernova remnant. It is characterized by strong glitch activity with the highest rate of all known Crab-like system.Comment: 4 pages, 2 figures. Contribution to the proceedings of "The Restless High-Energy Universe", Amsterdam, May 5-8, 2003. Editors: E.P.J. van den Heuvel, J.J.M. in't Zand, R.A.M.J. Wijer
    corecore