2,078 research outputs found

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    On the track for an efficient detection of Escherichia coli in water : A review on PCR-based methods

    Get PDF
    Ensuring water safety is an ongoing challenge to public health providers. Assessing the presence of fecal contamination indicators in water is essential to protect public health from diseases caused by waterborne pathogens. For this purpose, the bacteria Escherichia coli has been used as the most reliable indicator of fecal contamination in water. The methods currently in use for monitoring the microbiological safety of water are based on culturing the microorganisms. However, these methods are not the desirable solution to prevent outbreaks as they provide the results with a considerable delay, lacking on specificity and sensitivity. Moreover, viable but non-culturable microorganisms, which may be present as a result of environmental stress or water treatment processes, are not detected by culture-based methods and, thus, may result in false-negative assessments of E. coli in water samples. These limitations may place public health at significant risk, leading to substantial monetary losses in health care and, additionally, in costs related with a reduced productivity in the area affected by the outbreak, and in costs supported by the water quality control departments involved. Molecular methods, particularly polymerase chain reaction-based methods, have been studied as an alternative technology to overcome the current limitations, as they offer the possibility to reduce the assay time, to improve the detection sensitivity and specificity, and to identify multiple targets and pathogens, including new or emerging strains. The variety of techniques and applications available for PCR-based methods has increased considerably and the costs involved have been substantially reduced, which together have contributed to the potential standardization of these techniques. However, they still require further refinement in order to be standardized and applied to the variety of environmental waters and their specific characteristics. The PCR-based methods under development for monitoring the presence of E. coli in water are here discussed. Special emphasis is given to methodologies that avoid pre-enrichment during the water sample preparation process so that the assay time is reduced and the required legislated sensitivity is achieved. The advantages and limitations of these methods are also reviewed, contributing to a more comprehensive overview toward a more conscious research in identifying E. coli in water.Diana Mendes (SFRH/BDE/33752/2009) was recipient of a fellowship from the Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) and Frilabo, Lda. The authors thank Tatiana Aguiar (Centre of Biological Engineering) for English proofreading, the financial support from the Project "Desenvolvimento de um kit de detecao e quantificacao de E. coli e bacterias coliformes em aguas", Ref. 2009/5787, Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER, the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Project "Biolnd-Biotechnology and Bioengineering for improved Industrial and processes", REF. NORTE-07-0124-FEDER-000028 Co-funded by the Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER

    Direct determination of band-gap renormalization in degenerately doped ultrawide band gap β-Ga_{2}O_{3} semiconductor

    Get PDF
    Ga2O3 is emerging as a promising wide band-gap semiconductor for high-power electronics and deep ultraviolet optoelectronics. It is highly desirable to dope it with controllable carrier concentrations for different device applications. This work reports a combined photoemission spectroscopy and theoretical calculation study on the electronic structure of Si doped Ga_{2}O_{3} films with carrier concentration varying from 4.6×10^{18} cm^{−3} to 2.6×10^{20} cm^{−3}. Hard x-ray photoelectron spectroscopy was used to directly measure the widening of the band gap as a result of occupation of conduction band and band-gap renormalization associated with many-body interactions. A large band-gap renormalization of 0.3 eV was directly observed in heavily doped Ga_{2}O_{3}. Supplemented with hybrid density functional theory calculations, we demonstrated that the band-gap renormalization results from the decrease in energy of the conduction band edge driven by the mutual electrostatic interaction between added electrons. Moreover, our work reveals that Si is a superior dopant over Ge and Sn, because Si 3s forms a resonant donor state above the conduction band minimum, leaving the host conduction band mostly unperturbed and a high mobility is maintained though the doping level is high. Insights of the present work have significant implications in doping optimization of Ga_{2}O_{3} and realization of optoelectronic devices

    Deep UV transparent conductive oxide thin films realized through degenerately doped wide-bandgap gallium oxide

    Get PDF
    Deep UV transparent thin films have recently attracted considerable attention owing to their potential in UV and organic-based optoelectronics. Here, we report the achievement of a deep UV transparent and highly conductive thin film based on Si-doped Ga_{2}O_{3} (SGO) with high conductivity of 2500 S/cm. The SGO thin films exhibit high transparency over a wide spectrum ranging from visible light to deep UV wavelength and, meanwhile, have a very low work-function of approximately 3.2 eV. A combination of photoemission spectroscopy and theoretical studies reveals that the delocalized conduction band derived from Ga 4s orbitals is responsible for the Ga_{2}O_{3} films’ high conductivity. Furthermore, Si is shown to act as an efficient shallow donor, yielding high mobility up to approximately 60 cm^{2}/Vs. The superior optoelectronic properties of SGO films make it a promising material for use as electrodes in high-power electronics and deep UV and organic-based optoelectronic devices

    Correlated long-range mixed-harmonic fluctuations measured in pp, p+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

    Get PDF
    For abstract see published article

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Operation and performance of the ATLAS Tile Calorimeter in Run 1

    Get PDF
    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report

    Searches for exclusive Higgs and Z boson decays into J/ψγ,ψ(2S)γ,and Υ(nS)γ at √s=13 TeV with the ATLAS detector

    Get PDF
    Searches for the exclusive decays of the Higgs and Z bosons into a J/ψ,ψ(2S), or Υ(nS)(n=1,2,3) meson and a photon are performed with a pp collision data sample corresponding to an integrated luminosity of 36.1 fb −1 collected at √s =13 TeV with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above the expected backgrounds, and 95% confidence-level upper limits on the branching fractions of the Higgs boson decays to J/ψγ, ψ(2S)γ,and Υ(nS)γ of 3.5×10 −4, 2.0×10−3,and(4.9,5.9,5.7)×10 −4,respectively, are obtained assuming Standard Model production. The corresponding 95% confidence-level upper limits for the branching fractions of the Z boson decays are 2.3×10 −6, 4.5×10 −6 and (2.8,1.7,4.8)×10 −6, respectively
    corecore