199 research outputs found

    Glutathione And S-nitrosoglutathione In Alginate/chitosan Nanoparticles: Cytotoxicity

    Get PDF
    Nitric oxide (NO) is involved in several physiological processes, such as the control of vascular tone, the immune response and the wound healing process. Thus, there is a great interest in the development of NO-releasing drugs and in matrices which are able to stabilize and release NO locally in different tissues. Thiols, such as glutathione (GSH), are ready nitrosated to form the NO donors S-nitrosothiols (RSNOs). In this work, GSH, a precursor of the NO donor S-nitrosoglutathione (GSNO), was encapsulated into a mucoadhesive combination of alginate/chitosan nanoparticles. The encapsulated GSH was nitrosated in the alginate/chitosan nanoparticles by adding sodium nitrite, leading to the formation of encapsulated GSNO. The cytotoxicity characterization of the nanoparticles containing either GSH or GSNO showed that these materials were completely non cytotoxic to cellular viability. These results show that this novel nanostructure biomaterial has a great potential to be use in biomedical applications where NO has a therapeutical effect.3041Seabra, A.B., Fitzpatrick, A., Paul, J., De Oliveira, M.G., Weller, R., (2004) Br. J. Dermatol., 151, p. 977Seabra, A.B., Pankotai, E., Fehér, M., Somlai, A., Kiss, L., Bíró, L., Szabó, C., Lacza, Z., (2007) Br. J. Dermatol., 156, p. 814Moore, C., Tymvios, C., Emerson, M., (2010) Thromb. Haemost., 104, p. 342Amadeu, T.P., Seabra, A.B., De Oliveira, M.G., Costa, A.M.A., (2007) J. Eur. Acad. Dermatol. Venereol., 21, p. 629Amadeu, T.P., Seabra, A.B., De Oliveira, M.G., Costa, A.M.A., (2008) J. Surg Res., 149, p. 84Nahrevanian, H., Amini, M., (2008) Iranian J. Basic Med. Sci., 11, p. 197Seabra, A.B., Durån, N., (2010) J. Mater. Chem., 20, p. 1624Kapadia, M.R., Chow, L.W., Tsihlis, N.D., Ahanchi, S.S., Eng, J.W., Murar, J., Martinez, J., Kibbe, M.R., (2008) J. Vasc. Surg., 47, p. 173De Oliveira, M.G., Shishido, S.M., Seabra, A.B., Morgon, M.H., (2002) J. Phys. Chem., 106, p. 8963Hogg, N., Singh, R.J., Kalyanaraman, B., (1996) FEBS Lett., 382, p. 223Seabra, A.B., Da Silva, R., De Souza, G.F.P., De Oliveira, M.G., (2008) Artif. Organs, 32, p. 262Seabra, A.B., Martins, D., Simes, M.M.S.G., Da Silva, R., Brocchi, M., De Oliveira, M.G., (2010) Artif. Organs, 34, p. 204Seabra, A.B., De Souza, G.F.P., Da Rocha, L.L., Eberlin, M.N., De Oliveira, M.G., (2004) Nitric Oxide, 11, p. 263Seabra, A.B., Da Silva, R., De Oliveira, M.G., (2005) Biomacromolecules, 6, p. 2512Frost, M.C., Reynolds, M., Meyerhoff, M.E., (2005) Biomaterials, 26, p. 1685Fortenberry, J.D., Owens, M.L., Brown, L.A.S., (1999) Am. J. Physiol. Lung Cell Mol. Physiol., 276, p. 435Douglas, K.L., Piccirillo, C.A., Tabrizian, M., (2006) J. Control. Release, 115, p. 354Correa, D.H.A., Melo, P.S., De Carvalho, C.A.A., De Azevedo, M.B.M., Durån, N., Haun, M., (2005) Eur. J. Pharmacol., 510, p. 17De Conti, R., Oliveira, D.A., Fernandes, A.M.A.P., Melo, P.S., Rodriguez, J.A., Haun, M., Castro, S.L., Durån, N., (1998) In Vitro Mol. Toxicol, 11, p. 153Borefreund, E., Puerner, J.A., (1984) J. Tissue Cult. Methods, 9, p. 7Denizot, F., Lang, R., (1986) J. Immunol. Methods, 89, p. 27

    Nanoparticles In Treatment Of Thermal Injured Rats: Is It Safe?

    Get PDF
    The aim of this study was to assess whether thermal trauma induced oxidative stress altered the balance between oxidant and antioxidant systems in the blood of burn wound rats in the absence and presence of silver nanoparticles and S-nitrosoglutathione, GSNO. Free silver nanoparticles, free GSNO and silver nanoparticles + GSNO had no cytotoxic effects. Under anesthesia, the shaved dorsum of the rats was exposed to 90°C (burn group) water bath. Studied compounds were administered topically immediately and at 28 days after the burn injury, four times a day. Silver nanoparticles and silver nanoparticles + GSNO were no toxic in vitro and in vivo. There were no significant differences in the levels of urea, creatinine, aminotransferases and hematological parameters, in control-burn groups (free silver nanoparticles) and treated-burn groups (free GSNO or silver nanoparticles + GSNO). There were no differences in lipid peroxidation and in the levels of protein carbonyls and glutathione, used as oxidative stress markers. A little inflammatory cell response, papillary dermis vascularization, fibroblasts differentiated into contractile myofibroblasts and the presence of a large amount of extracellular matrix were evidenced in treated groups following skin injury. These results indicate that silver nanoparticles and GSNO may provide an effective action on wound healing.3041Tian, J., Wong, K.K.Y., Ho, C.M., Lok, C.N., Yu, W.Y., Che, C.M., Chiu, J.F., Tam, P.K.H., (2007) J. Chem. Med. Chem., 2, p. 129Teli, M.K., Mutalik, S., Rajanikant, G.K., (2010) Cur. Pharm. Design., 16, p. 1882Schaller, M., Laude, J., Bodewaldt, H., Hamm, G., Korting, H.C., (2004) Skin Pharmacol. Physiol., 17, p. 31Seabra, A.B., Da Silva, R., De Souza, G.F.P., De Oliveira, M.G., (2008) Artif. Organs, 32, p. 262Seabra, A.B., Pankotai, E., Fehér, M., Somlai, A., Kiss, L., Bíró, L., Szabó, C., Lacza, Z., (2007) Br. J. Dermatol., 156, p. 814Seabra, A.B., Martins, D., Simes, M.M.S.G., Da Silva, R., Brocchi, M., De Oliveira, M.G., (2010) Artif. Organs, 34, p. 204Durån, N., Marcato, P.D., Alves, O.L., De Souza, G.I.H., Esposito, E., (2005) J. Nanobiotechnol., 3, p. 1Durån, N., Marcato, P.D., De Souza, G.I.H., Alves, O.L., Esposito, E., (2007) J. Biomed. Nanotechnol., 3, p. 203Amadeu, T.P., Seabra, A.B., De Oliveira, M.G., Costa, A.M.A., (2007) J. Eur. Acad. Dermatol. Venereol., 21, p. 629Amadeu, T.P., Seabra, A.B., De Oliveira, M.G., Costa, A.M.A., (2008) J. Surg Res., 149, p. 84Correa, D.H.A., Melo, P.S., De Carvalho, C.A.A., De Azevedo, M.B.M., Durån, N., Haun, M., (2005) Eur. J. Pharmacol., 510, p. 17De Conti, R., Oliveira, D.A., Fernandes, A.M.A.P., Melo, P.S., Rodriguez, J.A., Haun, M., Castro, S.L., Durån, N., (1998) Vitro Mol. Toxicol, 11, p. 153Borefreund, E., Puerner, J.A., (1984) J. Tissue Cult. Methods, 9, p. 7Denizot, F., Lang, R., (1986) J. Immunol. Methods, 89, p. 271Michailidis, Y., Jamurta, A.Z., Nikolaidis, M.G., Fatouros, I.G., Koutedakis, Y., Papassotiriou, I., (2007) Med. Sci. Sport Exerc., 39, p. 1107Davis, T.A., Amare, M., Naik, S., Kovalchuk, A.L., Tadaki, D., (2007) Wound Repair Regen., 15, p. 57

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter

    Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the double-differential cross section for the Drell-Yan Z/γ∗ → ℓ+ℓ− and photon-induced γγ → ℓ+ℓ− processes where ℓ is an electron or muon. The measurement is performed for invariant masses of the lepton pairs, mℓℓ, between 116 GeV and 1500 GeV using a sample of 20.3 fb−1 of pp collisions data at centre-of-mass energy of √s = 8 TeV collected by the ATLAS detector at the LHC in 2012. The data are presented double differentially in invariant mass and absolute dilepton rapidity as well as in invariant mass and absolute pseudorapidity separation of the lepton pair. The single-differential cross section as a function of mℓℓ is also reported. The electron and muon channel measurements are combined and a total experimental precision of better than 1% is achieved at low mℓℓ. A comparison to next-to-next-to-leading order perturbative QCD predictions using several recent parton distribution functions and including next-to-leading order electroweak effects indicates the potential of the data to constrain parton distribution functions. In particular, a large impact of the data on the photon PDF is demonstrated

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton–proton collisions at √s=13TeV with the ATLAS detector

    Get PDF
    Searches for high-mass resonances in the dijet invariant mass spectrum with one or two jets identi-fied as b-jets are performed using an integrated luminosity of 3.2fb−1of proton–proton collisions with a centre-of-mass energy of √s=13TeVrecorded by the ATLAS detector at the Large Hadron Collider. Noevidence of anomalous phenomena is observed in the data, which are used to exclude, at 95%credibility level, excited b∗quarks with masses from 1.1TeVto 2.1TeVand leptophobic Z bosons with masses from 1.1TeVto 1.5TeV. Contributions of a Gaussian signal shape with effective cross sections ranging from approximately 0.4 to 0.001pb are also excluded in the mass range 1.5–5.0TeV
    • 

    corecore