3,522 research outputs found
Interactive effects between carbon allotrope fillers on the mechanical reinforcement of polyisoprene based nanocomposites
Interactive effects of carbon allotropes on the mechanical reinforcement of polymer nanocomposites were investigated. Carbon nanotubes (CNT) and nano-graphite with high shape anisotropy (nanoG) were melt blended with poly(1,4- cis-isoprene), as the only fillers or in combination with carbon black (CB), measuring the shear modulus at low strain amplitudes for peroxide crosslinked composites. The nanofiller was found to increase the low amplitude storage modulus of the matrix, with or without CB, by a factor depending on nanofiller type and content. This factor, fingerprint of the nanofiller, was higher for CNT than for nanoG. The filler-polymer interfacial area was able to correlate modulus data of composites with CNT, CB and with the hybrid filler system, leading to the construction of a common master curve. © BME-PT
Analisa Teknis Perancangan Turbin pada Turbocahrger Menggunakan CFD
Fungsi tambahan dari Turbocharger terhadap motor yakni dapat mengurangi SFOC (Specific Fuel Oil Consumption), memperkecil getaran, serta meningkatkan efisiensia. Prinsip kerja dari turbocharger adalah gas buang dari mesin diesel dialirkan menuju gas inlet cashing untuk menggerakan turbin turbocharger, setelah turbin bergerak aliran fluida akan keluar melalui gas outlet cashing. Karena turbin berputar maka shaft turbin yang telah terhubung dengan kompresor otomatis akan memutar impeller kompresor tersebut. Sehingga mengakibatka udara luar masuk melalui air inlet casing, akibat putaran kompresor fluida gas menjadi bertekanan dan dapat mensuplay ke mesin diesel tersebut. Pada penulisan tugas akhir ini akan membahas tentang analisa teknis perancangan turbin turbocharger dengan mevariasikan nilai putaran turbin sejumpah 5000 rpm,10000 rpm, 15000 rpm, 20000 rpm 25000 rpm dan 30000 rpm. Sedangkan mass flow rate fluida disesuaikan dengan exhaust gas mass flow rate berdasarkan kondisi engine 100%, 85%, 75 % sedangkan nilai mass flow rate sebesar 1.7 kg/s, 1.45 kg/s dan 1.28 kg/s. Jumlah blade dan diameter blade telah ditentukan dan tidak mengubah sudut setiap putaran turbin. Analisa menggunakan Computational Fluids Dynamics (CFD) dengan memasukan nilai-nilai yang telah ditentukan. Dengan menghasilkan putaran RPM ketika engine power sebesar 75% maka putaran 18944 RPM,Ketika engine power sebesar 85% maka putaran 22346 RPM.,Ketika engine power sebesar 100% sebesar 26956 RPM
Fatigue behavior and cyclic damage of peek short fiber reinforced composites
Fatigue strength and failure mechanisms of short fiber reinforced (SFR) PEEK have been investigated in
the past by several research groups. However some relevant aspects of the fatigue behavior of these
materials, like cyclic creep and fatigue damage accumulation and modeling, have not been studied yet,
in particular in presence of both fillers and short fibers as reinforcement. In the present research these
aspects were considered by carrying out uni-axial fatigue tests in load control (cycle ratio R = 0) on neat
PEEK and PEEK based composites reinforced either with short carbon fibers only or with addition of fillers
(graphite and PTFE). For each material stress-life curves were obtained and compared. Fatigue fracture
surfaces were analyzed to identify failure mechanisms in presence of different reinforcement types.
The evolution of cyclic creep strain was also monitored as a function of the number of cycles, thus allowing
investigation on the correlation between cyclic creep parameters and fatigue life. The evolution of
cyclic damage with loading cycles was then compared by defining a damage parameter related to the
specimen stiffness reduction observed during the tests. Progressive cyclic damage evolution of short fiber
reinforced PEEK composites presented significantly different patterns depending on applied stress level
and on the presence of different reinforcement typologies. In order to reproduce the different fatigue
damage kinetics and stages of progressive damage accumulation observed experimentally, a cyclic
damage model was finally developed and implemented into a finite element code by which a satisfactory
agreement between numerical prediction and experimental data at different stress levels for each examined
material
Master curves for the mechanical reinforcement of diene elastomers with sp2 carbon allotropes
sp2 carbon allotropes are efficient reinforcing fillers for polymer melt and
elastomers: carbon black (CB) has been used since early 1900’s and nanofillers such
as carbon nanotubes (CNT), graphene and graphene related materials (GRM) have
increased their importance over the last decades. Nanofillers can definitely
establish larger interfacial area with the polymer matrix than CB and great impact
on material properties is thus expected. However, it is widely acknowledged that
they will not be able to completely replace CB. Hence, increasing research efforts
are on hybrid systems based on CB-CNT and CB-GRM [1]. Research objective is to
identify common features and behaviour of nano (CNT, GRM) and nanostructured
(CB) sp2 carbon allotropes.
In this work, initial modulus was determined by means of dynamic-mechanical
shear measurements of composites based on either poly(1,4-cis-isoprene) or
poly(styrene-co-butadiene) as the rubber and either CB or CNT or GRM or hybrid
systems as the reinforcing fillers.
Filler-polymer interfacial area (i.a.), calculated as the product of filler surface
area, density and volume fraction, was used to establish a common correlation
with the composite initial modulus. A sort of master curve was derived, able to fit
all the points up to interfacial area of about 27 μm-1, corresponding to remarkable
filler content.
Much better efficiency was shown by carbon fillers, when composites were
prepared through latex blending. To allow easy dispersion in rubber latex, sp2
carbon allotropes were functionalized with a serinol derivative: 2-(2,5-dimethyl-
1H-pyrrol-1-yl)-1,3-propanediol (serinol pyrrole, SP) [2, 3], shown in Figure 1
Una procedura per la valutazione dei limiti di utilizzo di O-Ring sottoposti ad intensi fasci di neutroni
Si presenta una procedura per la previsione della durata di utilizzo di O-ring in materiale polimerico impiegati nei bersagli per la produzione di fasci di ioni radioattivi. Si sono dapprima condotte prove di tenuta a vuoto e analisi a elementi finiti di un O-ring di riferimento operante con diversi livelli di interferenza con la cava, identificando la precompressione limite per la tenuta e la corrispondente pressione di contatto con la cava. Si sono poi effettuate prove di trazione e di Compression Set su campioni di O-ring in EPDM, preventivamente sottoposti a diversi livelli di irraggiamento in campi misti di neutroni e gamma, analizzando l’effetto della dose assorbita sul comportamento meccanico del materiale e sulle corrispondenti proprietà resistenziali, e definendo opportune leggi costitutive. Si sono infine simulate le progressive modifiche di comportamento della guarnizione indotte dall’irraggiamento, prevedendone la durata in esercizio in termini di tenuta e di resistenza strutturale
Coevolved mutations reveal distinct architectures for two core proteins in the bacterial flagellar motor
Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity.JK was supported by Medical Research Council grant U117581331. SK was supported by seed funds from Lahore University of Managment Sciences (LUMS) and the Molecular Biology Consortium
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector
A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13 TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report
This Report summarizes the proceedings of the 2015 Les Houches workshop on
Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant
for high precision Standard Model calculations, (II) the new PDF4LHC parton
distributions, (III) issues in the theoretical description of the production of
Standard Model Higgs bosons and how to relate experimental measurements, (IV) a
host of phenomenological studies essential for comparing LHC data from Run I
with theoretical predictions and projections for future measurements in Run II,
and (V) new developments in Monte Carlo event generators.Comment: Proceedings of the Standard Model Working Group of the 2015 Les
Houches Workshop, Physics at TeV Colliders, Les Houches 1-19 June 2015. 227
page
- …
