892 research outputs found

    Resampling-based confidence regions and multiple tests for a correlated random vector

    Get PDF
    We derive non-asymptotic confidence regions for the mean of a random vector whose coordinates have an unknown dependence structure. The random vector is supposed to be either Gaussian or to have a symmetric bounded distribution, and we observe nn i.i.d copies of it. The confidence regions are built using a data-dependent threshold based on a weighted bootstrap procedure. We consider two approaches, the first based on a concentration approach and the second on a direct boostrapped quantile approach. The first one allows to deal with a very large class of resampling weights while our results for the second are restricted to Rademacher weights. However, the second method seems more accurate in practice. Our results are motivated by multiple testing problems, and we show on simulations that our procedures are better than the Bonferroni procedure (union bound) as soon as the observed vector has sufficiently correlated coordinates.Comment: submitted to COL

    Modeling and Simulation of Tawaf and Sa'yee: A Survey of Recent Work in the Field

    Get PDF
    Between 2002 and 2012 the number of pilgrims taking part in the 5-day hajj (the annual pilgrimage to Mecca) rose dramatically from 1.9m to 3.2m, before stabilizing at around 2 million following the introduction of new quotas in 2013. The gathering together of so many people has obvious crowd-safety implications, ranging from stampedes and protests to pickpocketing and dis- ease control, and there is an obvious need for models and simulations of the relevant crowd behaviours. More- over, the regular occurrence of the event, the size and diversity of the crowds involved, and the amount of freely available information make this an excellent case study for the study of crowd behaviour. We survey recent at- tempts to model the key hajj rituals of tawaf (during which pilgrims collectively circumambulate the Ka’aba seven times) and sa’yee (running or walking seven times between two nearby hills), and highlight ways in which some of the limitations of these studies may be overcome in future work

    Superconductivity in the SU(N) Anderson Lattice at U=\infty

    Full text link
    We present a mean-field study of superconductivity in a generalized N-channel cubic Anderson lattice at U=\infty taking into account the effect of a nearest-neighbor attraction J. The condition U=\infty is implemented within the slave-boson formalism considering the slave bosons to be condensed. We consider the ff-level occupancy ranging from the mixed valence regime to the Kondo limit and study the dependence of the critical temperature on the various model parameters for each of three possible Cooper pairing symmetries (extended s, d-wave and p-wave pairing) and find interesting crossovers. It is found that the d- and p- wave order parameters have, in general, very similar critical temperatures. The extended s-wave pairing seems to be relatively more stable for electronic densities per channel close to one and for large values of the superconducting interaction J.Comment: Seven Figures; one appendix. Accepted for publication in Phys. Rev.

    A Parametric Study of Erupting Flux Rope Rotation. Modeling the "Cartwheel CME" on 9 April 2008

    Full text link
    The rotation of erupting filaments in the solar corona is addressed through a parametric simulation study of unstable, rotating flux ropes in bipolar force-free initial equilibrium. The Lorentz force due to the external shear field component and the relaxation of tension in the twisted field are the major contributors to the rotation in this model, while reconnection with the ambient field is of minor importance. Both major mechanisms writhe the flux rope axis, converting part of the initial twist helicity, and produce rotation profiles which, to a large part, are very similar in a range of shear-twist combinations. A difference lies in the tendency of twist-driven rotation to saturate at lower heights than shear-driven rotation. For parameters characteristic of the source regions of erupting filaments and coronal mass ejections, the shear field is found to be the dominant origin of rotations in the corona and to be required if the rotation reaches angles of order 90 degrees and higher; it dominates even if the twist exceeds the threshold of the helical kink instability. The contributions by shear and twist to the total rotation can be disentangled in the analysis of observations if the rotation and rise profiles are simultaneously compared with model calculations. The resulting twist estimate allows one to judge whether the helical kink instability occurred. This is demonstrated for the erupting prominence in the "Cartwheel CME" on 9 April 2008, which has shown a rotation of \approx 115 degrees up to a height of 1.5 R_sun above the photosphere. Out of a range of initial equilibria which include strongly kink-unstable (twist Phi=5pi), weakly kink-unstable (Phi=3.5pi), and kink-stable (Phi=2.5pi) configurations, only the evolution of the weakly kink-unstable flux rope matches the observations in their entirety.Comment: Solar Physics, submitte

    Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"

    Full text link
    ``EIT waves" are large-scale coronal bright fronts (CBFs) that were first observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}. Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that propagate pseudo-radially across the solar disk at velocities of 100--700 km s1^{-1} with front widths of 50-100 Mm. As their speed is greater than the quiet coronal sound speed (csc_s\leq200 km s1^{-1}) and comparable to the local Alfv\'{e}n speed (vAv_A\leq1000 km s1^{-1}), they were initially interpreted as fast-mode magnetoacoustic waves (vf=(cs2+vA2)1/2v_{f}=(c_s^2 + v_A^2)^{1/2}). Their propagation is now known to be modified by regions where the magnetosonic sound speed varies, such as active regions and coronal holes, but there is also evidence for stationary CBFs at coronal hole boundaries. The latter has led to the suggestion that they may be a manifestation of a processes such as Joule heating or magnetic reconnection, rather than a wave-related phenomena. While the general morphological and kinematic properties of CBFs and their association with coronal mass ejections have now been well described, there are many questions regarding their excitation and propagation. In particular, the theoretical interpretation of these enigmatic events as magnetohydrodynamic waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore