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Abstract

We derive non-asymptotic confidence regions for the mean of a ran-
dom vector whose coordinates have an unknown dependence structure.
The random vector is supposed to be either Gaussian or to have a sym-
metric bounded distribution, and we observe n i.i.d copies of it. The
confidence regions are built using a data-dependent threshold based
on a weighted bootstrap procedure. We consider two approaches, the
first based on a concentration approach and the second on a direct
boostrapped quantile approach. The first one allows to deal with a
very large class of resampling weights while our results for the second
are restricted to Rademacher weights. However, the second method
seems more accurate in practice. Our results are motivated by multi-
ple testing problems, and we show on simulations that our procedures
are better than the Bonferroni procedure (union bound) as soon as
the observed vector has sufficiently correlated coordinates.
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1 Introduction

In this work, we assume that we observe a sample Y := (Y1, . . . ,Yn) of
n ≥ 2 i.i.d. observations of an integrable random vector Yi ∈ R

K with a
dimension K possibly much greater than n. Let µ ∈ R

K denote the common
mean of the Yi ; our main goal is to find a non-asymptotic (1−α)-confidence
region for µ , of the form:

{
x ∈ R

K s.t. φ
(
Y − x

)
≤ tα(Y)

}
, (1)

where φ : R
K → R is a measurable function fixed in advance by the user

(measuring a kind of distance), α ∈ (0, 1), tα :
(
R

K
)n → R is a measurable

data-dependent threshold, and Y = 1
n

∑n
i=1 Yi is the empirical mean of the

sample Y.
The form of the confidence region (1) is motivated by the following mul-

tiple testing problem: if we want to test simultaneously for all 1 ≤ k ≤ K
the hypotheses H0,k = {µk ≤ 0} against H1,k = {µk > 0}, we propose to
reject the H0,k corresponding to

{1 ≤ k ≤ K s.t. Yk > tα(Y)} .

The error of this multiple testing procedure can be measured by the
family-wise error rate defined by the probability that at least one hypothesis
is wrongly rejected. Here, this error will be strongly (i.e. for any value of µ)
controlled by α as soon as the confidence region (1) for µ with φ = sup(·) is
of level at least 1 − α. Indeed, for all µ,

P
(
∃k s.t. Yk > tα(Y) and µk ≤ 0

)
≤ P

(
∃k s.t. Yk − µk > tα(Y)

)

= P

(
sup

k

{
Yk − µk

}
> tα(Y)

)
.

The same reasoning with φ = sup |·| allows us to test H0,k = {µk = 0} against
H1,k = {µk 6= 0}, by choosing the rejection set {1 ≤ k ≤ K s.t.

∣∣Yk

∣∣ >
tα(Y)}.

While this goal is statistical in motivation, to tackle it we want to follow
a point of view inspired from learning theory, in the following sense: first, we
want a non-asymptotical result valid for any fixed K and n, and secondly,
we want to make no assumptions on the dependency structure of the coor-
dinates of Yi (although we will consider some general assumptions over the
distribution of Y, for example that it is Gaussian).

The ideal threshold tα in (1) is obviously the 1 − α quantile of the dis-
tribution of φ

(
Y − µ

)
. However, this quantity depends on the unknown

2



dependency structure of the coordinates of Yi and is therefore itself un-
known.

We propose here to approach tα by some resampling scheme: the heuris-
tics of the resampling method (introduced by Efron [Efr79]) is that the dis-
tribution of Y − µ is “close” to the one of

Y[W−W ] :=
1

n

n∑

i=1

(Wi − W )Yi =
1

n

n∑

i=1

Wi(Y
i −Y) =

(
Y − Y

)
[W ]

,

conditionally to Y, where (Wi)1≤i≤n are real random variables independent
of Y called the resampling weights, and W = n−1

∑n
i=1 Wi . We emphasize

that the family (Wi)1≤i≤n itself need not be independent.
Following this idea, we propose two different approaches to obtain non-

asymptotic confidence regions in this paper:

1. The expectations of φ
(
Y − µ

)
and φ

(
Y[W−W ]

)
can be precisely com-

pared, and the processes φ
(
Y − µ

)
and E

[
φ
(
Y[W−W ]

) ∣∣Y
]

concen-

trate well around their expectations.

2. The 1− α quantile of the distribution of φ
(
Y[W−W ]

)
conditionally to

Y is close to the one of φ
(
Y − µ

)
.

Method 1 above is closely related to the Rademacher complexity approach
in learning theory, and our results in this direction are heavily inspired by
the work of Fromont [Fro04], who studies general resampling schemes in a
learning theoretical setting. It may also be seen as a generalization of cross-
validation methods. For method 2, we will restrict ourselves specifically to
Rademacher weights in our analysis, because we use a symmetrization trick.
Although this kind of method is not new in the resampling literature, to our
knowledge our result is the first to provide a non-asymptotic analysis based
on empirical resampled quantiles.

Let us now define a few notations that will be useful throughout this
paper.

• Vectors, such as data vectors Yi = (Yi
k)1≤k≤K , will always be column

vectors. Thus, Y is a K × n data matrix.

• If µ ∈ R
K , Y − µ is the matrix obtained by subtracting µ to each

(column) vector of Y. If c ∈ R and W ∈ R
n, W − c = (Wi − c)1≤i≤n ∈

R
n.

• Φ is the standard Gaussian upper tail function.
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Several properties may be assumed for the function φ : R
K → R:

• Subadditivity: ∀x, x′ ∈ R
K , φ (x + x′) ≤ φ(x) + φ (x′) .

• Positive-homogeneity: ∀x ∈ R
K , ∀λ ∈ R+, φ (λx) = λφ(x) .

• Bounded by the p-norm, p ∈ [1,∞]: ∀x ∈ R
K , |φ (x)| ≤ ‖x‖p, where

‖x‖p is equal to (
∑K

k=1 |xk|p)1/p if p < ∞ and maxk{|xk|} otherwise.

Finally, different assumptions on the generating distribution of Y can be
made:

(GA) The Gaussian assumption: the Yi are Gaussian vectors

(SA) The symmetric assumption: the Yi are symmetric with respect to µ
i.e. Yi − µ ∼ µ − Yi .

(BA)(p, M) The bounded assumption: ‖Yi − µ‖p ≤ M a.s.

In this paper, our primary focus is on the Gaussian framework (GA), because
the corresponding results will be more accurate.

The paper is organized as follows: Section 2 deals with the concentration
method with general weights. In Section 3, we propose an approach based on
resampling quantiles, with Rademacher weights. We illustrate our methods
in Section 4 with a simulation study. The proofs of our results are given in
Section 5.

2 Confidence region using concentration

In this section, we consider a general R
n-valued resampling weight vector

W , satisfying the following properties: W is independent of Y, for all i ∈
{1, . . . , n} E [W 2

i ] < ∞ , the (Wi)1≤i≤n have an exchangeable distribution (i.e.
invariant under every permutation of the indices) and the coordinates of W
are not a.s. equal, i.e. E

∣∣W1 − W
∣∣ > 0. Several examples of resampling

weight vectors are given in Section 2.3, where we also tackle the question of
choosing a resampling.

Four constants that depend only on the distribution of W appear in the
results below (the fourth one is defined only for a particular class of weights).
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They are defined as follows and computed for classical resamplings in Tab. 1:

AW := E
∣∣W1 − W

∣∣ (2)

BW := E




(

1

n

n∑

i=1

(
Wi − W

)2
) 1

2



 (3)

CW :=

(
n

n − 1
E

[(
W1 − W

)2]
) 1

2

(4)

DW := a + E
∣∣W − x0

∣∣ if ∀i, |Wi − x0| = a a.s. (with a > 0, x0 ∈ R) . (5)

Note that under our assumptions, these quantities are positive. Moerover,
if the weights are i.i.d., CW = Var(W1)

1

2 . We can now state the main result
of this section:

Theorem 2.1. Fix α ∈ (0, 1) and p ∈ [1,∞]. Let φ : R
K → R be any

function subadditive, positive-homogeneous and bounded by the p-norm, and
let W be a resampling weight vector.

1. If Y satisfies (GA), then

φ
(
Y − µ

)
<

E

[
φ
(
Y[W−W ]

) ∣∣Y
]

BW

+ ‖σ‖p Φ
−1

(α/2)

[
CW

nBW

+
1√
n

]

(6)
holds with probability at least 1−α, where σ is the vector [Var1/2(Y1

k)]k.
The same bound holds for the lower deviations, i.e. with inequality (6)
reversed and the additive term replaced by its opposite.

2. If Y satisfies (BA)(p, M) and (SA), then

φ
(
Y − µ

)
<

E

[
φ
(
Y[W−W ]

) ∣∣Y
]

AW
+

2M√
n

√
log(1/α)

holds with probability at least 1−α . If moreover the weights satisfy the
assumption of (5), then

φ
(
Y − µ

)
>

E

[
φ
(
Y[W−W ]

) ∣∣Y
]

DW
− M√

n

√

1 +
A2

W

D2
W

√
2 log(1/α)

holds with probability at least 1 − α .
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If there exists a deterministic threshold tα such that P(φ
(
Y − µ

)
> tα) ≤

α, the following corollary establishes that we can combine the above concen-
tration threshold with tα to get a new threshold almost better than both.

Corollary 2.2. Fix α, δ ∈ (0, 1), p ∈ [1,∞] and take φ and W as in Theorem
2.1. Suppose that Y satisfies (GA) and that tα(1−δ) is a real number such
that P

(
φ
(
Y − µ

)
> tα(1−δ)

)
≤ α(1− δ). Then with probability at least 1−α,

φ
(
Y − µ

)
is upper bounded by the minimum between tα(1−δ) and

E

[
φ
(
Y[W−W ]

) ∣∣Y
]

BW

+
‖σ‖p√

n
Φ

−1
(

α(1 − δ)

2

)
+

‖σ‖p CW

nBW

Φ
−1
(

αδ

2

)
. (7)

Remark 2.3. 1. Corollary 2.2 is a consequence of the proof of Theo-
rem 2.1, rather than of the theorem itself. The point here is that

E

[
φ
(
Y[W−W ]

) ∣∣Y
]

is almost deterministic, because it concentrates at

the rate n−1 (= o(n−1/2)).

2. For instance, if φ = sup(·) (resp. sup |·|), Corollary 2.2 may be applied
with tα equal to the classical Bonferroni threshold for multiple testing
(obtained using a simple union bound over coordinates)

tBonf,α :=
1√
n
‖σ‖∞ Φ

−1
( α

K

)(
resp. t′Bonf,α :=

1√
n
‖σ‖∞ Φ

−1
( α

2K

))
.

We thus obtain a confidence region almost equal to Bonferroni’s for
small correlations and better than Bonferroni’s for strong correlations
(see simulations in Section 4).

The proof of Theorem 2.1 involves results which are of self interest: the

comparison between the expectations of the two processes E

[
φ
(
Y[W−W ]

) ∣∣Y
]

and φ
(
Y − µ

)
and the concentration of these processes around their means.

This is examinated in the two following subsections. The last subsection
gives some elements for a wise choice of resampling weight vectors among
several classical examples.

2.1 Comparison in expectation

In this section, we compare Eφ
(
Y[W−W ]

)
and Eφ

(
Y − µ

)
. We note that

these expectations exist in the Gaussian and the bounded case provided
that φ is measurable and bounded by a p-norm. Otherwise, in particular in
Propositions 2.4 and 2.6, we assume that these expectations exist. In the
Gaussian case, these quantities are equal up to a factor that depends only
on the distribution of W :
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Proposition 2.4. Let Y be a sample satisfying (GA) and W a resampling
weight vector. Then, for any measurable positive-homogeneous function φ :
R

K → R, we have the following equality

BW Eφ
(
Y − µ

)
= Eφ

(
Y[W−W ]

)
. (8)

Remark 2.5. 1. In general, we can compute the value of BW by simula-
tion. For some classical weights, we give bounds or exact expressions
in Tab. 1.

2. In a non-Gaussian framework, the constant BW is still relevant, at least
asymptotically: in their Theorem 3.6.13, Van der Vaart and Wellner
[VdVW96] use the limit of BW when n goes to infinity as a normalizing
constant.

When the sample is only symmetric we obtain the following inequalities :

Proposition 2.6. Let Y be a sample satisfying (SA), W a resampling weight
vector and φ : R

K → R any subadditive, positive-homogeneous function.

(i) We have the general following lower bound :

AW Eφ
(
Y − µ

)
≤ Eφ

(
Y[W−W ]

)
. (9)

(ii) Moreover, if the weights satisfy the assumption of (5), we have the
following upper bound

DW Eφ
(
Y − µ

)
≥ Eφ

(
Y[W−W ]

)
. (10)

Remark 2.7. 1. The bounds (9) and (10) are tight for Rademacher and
Random hold-out (n/2) weights, but far less optimal in some other cases
like Leave-one-out (see Section 2.3).

2. When Y is not assumed to be symmetric and W = 1 a.s., Proposition
2 in [Fro04] shows that (9) holds with E(W1 − W )+ instead of AW .
Therefore, the symmetry of the sample allows us to get a tighter result
(for instance twice sharper with Efron or Random hold-out (q) weights).
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2.2 Concentration around the expectations

In this section we present concentration results for the two processes φ
(
Y − µ

)

and E

[
φ
(
Y[W−W ]

) ∣∣Y
]

in the Gaussian framework.

Proposition 2.8. Let p ∈ [1, +∞], Y a sample satisfying (GA) and let σ
be the vector [Var1/2(Y1

k)]k. Let φ : R
K → R be any subadditive function,

bounded by the p-norm.

(i) For all α ∈ (0, 1), with probabilty at least 1 − α the following holds:

φ
(
Y − µ

)
< Eφ

(
Y − µ

)
+

‖σ‖p Φ
−1

(α/2)
√

n
, (11)

and the same bound holds for the corresponding lower deviations.

(ii) Let W be some exchangeable resampling weight vector. Then, for all
α ∈ (0, 1), with probabilty at least 1 − α the following holds:

E

[
φ
(
Y[W−W ]

) ∣∣Y
]

< Eφ
(
Y[W−W ]

)
+

‖σ‖p CWΦ
−1

(α/2)

n
, (12)

and the same bound holds for the corresponding lower deviations.

The first bound (11) with a remainder in n−1/2 is classical. The last
one (12) is much more interesting since it enlights one of the key prop-
erties of the resampling idea: the “stabilization”. Indeed, the resampling

quantity E

[
φ
(
Y[W−W ]

)
|Y
]

concentrates around its expectation at the rate

CW n−1 = o
(
n−1/2

)
for most of the weights (see Section 2.3 and Tab. 1 for

more details). Thus, compared to the original process, it is almost determin-
istic and equal to BW Eφ

(
Y − µ

)
.

Remark 2.9. Combining expression (8) and Proposition 2.8 (ii), we derive
that for a Gaussian sample Y and any p ∈ [1,∞], the following upper bound
holds with probability at least 1 − α :

E
∥∥Y − µ

∥∥
p

<

E

[∥∥∥Y[W−W ]

∥∥∥
p

∣∣∣Y
]

BW

+
‖σ‖p CW

nBW

Φ
−1

(α/2) , (13)

and a similar lower bound holds. This gives a control with high probability of
the Lp-risk of the estimator Y of the mean µ ∈ R

K at the rate CW B−1
W n−1.
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Efron 2
(
1 − 1

n

)n
= AW ≤ BW ≤

√
n−1

n
CW = 1

Efr., n → +∞ 2
e
≤ AW ≤ BW ≤ 1 = CW

Rademacher 1 − 1√
n
≤ AW ≤ BW ≤

√
1 − 1

n
CW = 1 DW ≤ 1 + 1√

n

Rad., n → +∞ AW = BW = CW = DW = 1

R. h.-o. (q) AW = 2
(
1 − q

n

)
BW =

√
n
q
− 1

R. h.-o. (q) CW =
√

n
n−1

√
n
q
− 1 DW = n

2q
+
∣∣∣1 − n

2q

∣∣∣
R. h.-o. (n/2) (2|n) AW = BW = DW = 1 CW =

√
n

n−1

Leave-one-out 2
n

= AW ≤ BW = 1√
n−1

CW =
√

n
n−1

DW = 1

Table 1: Resampling constants for classical resampling weight vector.

2.3 Resampling weight vectors

In this section, we consider the question of choosing some appropriate resam-
pling weight vector W when using Theorem 2.1 or Corollary 2.2. We define
the following classical resampling weight vectors:

1. Rademacher: Wi i.i.d. Rademacher variables, i.e. Wi ∈ {−1, 1} with
equal probabilities.

2. Efron: W has a multinomial distribution with parameters (n; n−1, . . . , n−1).

3. Random hold-out (q) (R. h.-o.), q ∈ {1, . . . , n}: Wi = n
q
1i∈I , where I

is uniformly distributed on subsets of {1, . . . , n} of cardinality q. These
weights may also be called cross validation weights, or leave-(n−q)-out
weights. A classical choice is q = n/2 (when 2|n). When q = n − 1,
these weights are called leave-one-out weights.

For these classical weights, exact or approximate values for the quantities
AW , BW , CW and DW (defined by equations (2) to (5)) can be easily derived
(see Tab. 1). However, an exact computation of the resampling estimates

E

[
φ
(
Y[W−W ]

) ∣∣Y
]

using these weights would be time-consuming when n is

large. The more standard way to solve this problem is to compute resampling
quantities by Monte-Carlo simulations, i.e. picking up a small number of
weight vectors (see [Hal92], appendix II for a discussion). But we did not yet
investigate the analysis of the corresponding thresholds.

Another way to solve this computation time problem is to consider a
regular partition (Bj)1≤j≤V of {1, . . . , n} (where V ∈ {2, . . . , n} and V |n),
and to define the weights Wi = V

V −1
1i/∈BJ

with J uniformly distributed on
{1, . . . , V }. These weights are called the (regular) V -fold cross validation
weights (V -f. c.v.), which are no longer exchangeable but still “piece-wise
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exchangeable”. Considering the process (Ỹj)1≤j≤K where Ỹj = V
n

∑
i∈Bj

Yi

is the empirical mean of Y on block Bj , we can show that Theorem 2.1 can
be extended to (regular) V -fold cross validation weights with the following
resampling constants:

AW =
2

V
; BW =

1√
V − 1

; CW =
√

n(V − 1)−1 ; DW = 1 .

When V does not divide n and the blocks are no longer regular, Theorem 2.1
can also be generalized, but the constants have more complex expressions.

Note that in the Gaussian framework of (13), V -fold cross-validation

weights approximate the estimation risk E
∥∥Y − µ

∥∥
p
by

√
V −1
V 2

∑V
j=1

∥∥∥Ỹ(−j) − Ỹj
∥∥∥

p
,

where Ỹ(−j) is the mean of the (Ỹℓ)ℓ 6=j ; which bears a strong analogy with
the usual cross-validation philosophy. Actually, the “classical” leave-one-out

estimator 1
n

∑n
i=1

∥∥∥Ỹ(−i) − Yi
∥∥∥

p
approximates a different quantity, the pre-

diction risk E
∥∥Y − Yn+1

∥∥
p

for a new independent vector Yn+1 . However,

under (GA) the two types of risk are proportional,
√

n + 1E
∥∥Y − µ

∥∥
p

=

E
∥∥Y − Yn+1

∥∥
p
; taking into account this scaling we conclude that our esti-

mator (with V = n) coincides with the classical leave-one-out (up to the fac-
tor
√

1 − 1/n2 ∼ 1). To guide our choice for a specific resampling scheme, the
first comparison point is that tα,W (Y) should be an accurate upper bound of
the ideal threshold. Under the Gaussian assumption, in view of (6), CW B−1

W

appears as a relevant accuracy index for tα,W . However, a second compari-
son point is the price of an exact computation of tα,W in practice. Since one
must consider each possible weight vector to compute exactly the threshold,
we use the cardinality of the support of L(W ) as a complexity index.

As shown in Tab. 2, there is an accuracy-complexity trade-off for choosing
the weights. Since for all exchangeable weights CWB−1

W ≥
√

n/(n − 1), R. h.-
o.(n/2) and leave-one-out weights are optimal for accuracy (Rademacher and
Efron being ”almost optimal”). On the other hand, V -fold c.-v. is less accu-
rate, losing a factor

√
(n − 1)/(V − 1). On the computational viewpoint, the

leave-one-out is the only reasonable exchangeable procedure (at least when
n and K are large), and V -f. c.v. looks even more attractive. Considering
that tα,W involves the sum of terms of order CWB−1

W n−1 and n−1/2, the best
choice of V should be rather small for most applications. We do not give
here any universal optimal V since it does not exist, but we suggest to use
Tab. 2 to choose it.
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Resampling CWB−1
W (accuracy) Card (suppL(W )) (complexity)

Efron ≤ 1
2

(
1 − 1

n

)−n −−−→
n→∞

e
2

nn

Rademacher ≤
(
1 − n−1/2

)−1 −−−→
n→∞

1 2n

R. h.-o. (n/2) =
√

n
n−1

−−−→
n→∞

1
(

n
n/2

)
∝ n−1/22n

Leave-one-out =
√

n
n−1

−−−→
n→∞

1 n

regular V -fold c.-v. =
√

n
V −1

V

Table 2: Choice of the resampling weight vectors : accuracy-complexity
tradeoff.

3 Confidence region using resampled quan-

tiles

In the previous section we have shown how to derive non-asymptotic confi-
dence regions for the mean of a Gaussian (resp. bounded) vector with un-
known correlation structure; for this we used a concentration property of the

quantities φ(Y−µ) and E

[
φ(Y[W−W ])|Y

]
around their mean. The Gaussian

(resp. McDiarmid’s) concentration property allowed us to bound deviations
from this mean by the deviations of a suitably scaled normal (resp. subgaus-
sian) variable. Through this approach, the level of the confidence region is
rigorously controlled for any fixed sample size.

However, the obtained confidence regions are somewhat unsatisfying be-
cause they appear to be too conservative in practice. The principal reason
for this is that φ(Y − µ) is of course not a Gaussian variable (even when Y
is) . Therefore, in spite of the power of the Gaussian concentration property,
using Gaussian tails as a bound for the deviations of the above non-Gaussian
variable must necessarily result in losing some slack.

On the other hand, in most applications of resampling procedures, it
is common to estimate the quantiles of a variable like φ

(
Y − µ

)
by the

quantiles of the corresponding resampled distribution L
(
φ
(
Y[W−W ]

) ∣∣Y
)
,

and to use these quantiles to construct a confidence region. Again, while
many asymptotic results are available to justify this method (for instance
[VdVW96]), our goal here is to derive a non-asymptotic region based on a
similar approach for which the confidence level is proved to hold for any fixed
sample size.

For this we apply a principle that is close in spirit to exact tests, i.e.
by taking advantage of an invariance property (here symmetry around the
mean) of the initial distribution and using a resampling scheme that respects
this invariance. For this reason the scope of the current section is far less

11



general: instead of covering generic resampling weights, we only consider the
particular Rademacher resampling scheme. Let us define for a function φ the
resampled empirical quantile:

qα(φ,Y) = inf
{
x ∈ R s.t. PW

[
φ(Y[W ]) > x

]
≤ α

}
,

wherein W is an i.i.d Rademacher weight vector. We now state the main
technical result of this section:

Proposition 3.1. Fix δ, α ∈ (0, 1). Let Y be a data sample satisfying as-
sumption (SA). Let f :

(
R

K
)n → [0,∞) be a nonnegative (measurable)

function on the set of data samples. Let φ be a nonnegative, subadditive,
positive-homogeneous function. Denote φ̃(x) = max (φ(x), φ(−x)) . Finally,
for η ∈ (0, 1) , denote

B(n, η) = min

{
k ∈ {0, . . . , n} s.t. 2−n

n∑

i=k+1

(
n

i

)
< η

}
,

the upper quantile function of a binomial (n, 1
2
) variable. Then we have:

P
[
φ(Y − µ) > qα(1−δ)

(
φ,Y − Y

)
+ f(Y)

]

≤ α + P

[
φ̃(Y − µ) >

n

2B
(
n, αδ

2

)
− n

f(Y)

]

Remark 3.2. By Hoeffding’s inequality, n

2B(n, αδ
2
)−n

≥
(

n

2 ln( 2

αδ )

)1/2

.

By iteration of this proposition we obtain the following corollary:

Corollary 3.3. Fix J a positive integer, (αi)i=0,...,J−1 a finite sequence in
(0, 1) and β, δ ∈ (0, 1) . Let Y be a data sample satisfying assumption (SA).
Let φ : R

K → R be a nonnegative, subadditive, positive-homogeneous function
and f :

(
R

K
)n → [0,∞) be a nonnegative function on the set of data samples.

Then the following holds:

P

[
φ(Y − µ) > q(1−δ)α0

(φ,Y −Y) +
J−1∑

i=1

γiq(1−δ)αi
(φ̃,Y − Y) + γJf(Y)

]

≤
J−1∑

i=0

αi + P

[
φ̃(Y − µ) > f(Y)

]
, (14)

where, for k ≥ 1, γk = n−k

k−1∏

i=0

(
2B
(

n,
αiδ

2

)
− n

)
.

12



The rationale behind this result is that the sum appearing inside the
probability should be interpreted as a series of corrective terms of decreasing
order of magnitude, since we expect the sequence γk to be sharply decreasing.
Looking at Hoeffding’s bound, this will be the case if the levels are such that
αi ≫ exp(−n) .

Then comes the remaining issue of the trailing term on the right-hand-
side. While it is tempting to think that it would be possible to obtain a self-
contained result based on the symmetry assumption (SA) alone, we did not
succeed in this direction. To upper-bound the trailing term, we can assume
some additional regularity assumption on the distribution of the data. For
example, if the data are Gaussian or bounded, we can apply the results in
the previous section (or apply some other device like Bonferroni’s bound (8)).
The point is that this bound does not have to be particularly sharp, since
we expect (in favorable cases) the trailing probability term on the right-hand
side as well as the contribution of γJf(Y) to the left-hand side to be almost
negligible.

It seems plausible that at least a minor regularity assumption (suppos-
edly significantly weaker than assuming a Gaussian distribution or bounded
data) is actually a necessary condition in addition to (SA) to obtain a self-
contained bound and ensure that nothing pathological happens with the
extreme quantiles, but this remains as an interesting open issue.

As before, for computational reasons, it might be relevant to consider a
block-wise Rademacher resampling scheme.

4 Simulations

For simulations we consider data of the form Yt = µt + Gt , where t be-
longs to an m × m discretized 2D torus of K = m2 “pixels”, identified with
T

2
m = (Z/mZ)2 , and G is a centered Gaussian vector obtained by 2D discrete

convolution of an i.i.d. standard Gaussian field (“white noise”) on T
2
m with a

function F : T
2
m → R such that

∑
t∈T2

m
F 2(t) = 1 . This ensures that G is a

stationary Gaussian process on the discrete torus, it is in particular isotropic
with E [G2

t ] = 1 for all t ∈ T
2
m .

In the simulations below we consider for the function F a “Gaussian”
convolution filter of bandwith b on the torus:

Fb(t) = Cb exp
(
−d(0, t)2/b2

)
,

where d(t, t′) is the standard distance on the torus and Cb is a normalizing
constant. Note that for actual simulations it is more convenient to work in
the Fourier domain and to apply the inverse DFT which can be computed

13
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Figure 1: Left: example of a 128x128 pixel image obtained by convolution
of Gaussian white noise with a (toroidal) Gaussian filter with width b = 18
pixels. Right: average thresholds obtained for the different approaches, see
text.

efficiently. We then compare the different thresholds obtained by the methods
proposed in this work for varying values of b . Remember that the only
information available to the algorithm is the bound on the marginal variance;
the form of the function Fb itself is of course unknown.

On Fig. 4 we compare the thresholds obtained when φ = sup |·| , which
corresponds to the two-sided multiple testing situation. We use the different
approaches proposed in this work, with the following parameters: the dimen-
sion is K = 1282 = 16384 , the number of data points per sample is n = 1000
(much smaller than K, so that we really are in a non-asymptotic framework),
the width b takes even values in the range [0, 40] , the overall level is α = 0.05 .
For the concentration threshold (6) (’conc.’), we used Rademacher weights.
For the “compound” threshold of Corollary 2.2 (’min(conc.,bonf.)’), we used
δ = 0.1 and the Bonferroni threshold t′Bonf,0.9α as the deterministic reference
threshold. For the quantile approach (14), we used J = 1 , α0 = 0.9α ,
δ = 0.1 , and the function f is given either by the Bonferroni threshold
(’quant.+bonf.’) or the concentration threshold (’quant.+conc.’), both at
level 0.1α . Each point represents an average over 50 experiments. Finally,
we included in the figure the Bonferroni threshold t′Bonf,α, the threshold for a
single test for comparison, and an estimation of the true quantile (actually,
an empirical quantile over 1000 samples).

The quantiles or expectation with Rademacher weights were estimated
by Monte-Carlo with 1000 draws. On the figure we did not include standard
deviations: they are quite low, of the order of 10−3 , although it is worth
noting that the quantile threshold has a standard deviation roughly twice
as large as the concentration threshold (we did not investigate at this point
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what part of this variation is due to the MC approximation).
The overall conclusion of this preliminary experiment is that the different

thresholds proposed in this work are relevant in the sense that they are
smaller than the Bonferroni threshold provided the vector has strong enough
correlations. As expected, the quantile approach appears to lead to tighter
thresholds. (However, this might not be always the case for smaller sample
sizes.) One advantage of the concentration approach is that the ’compound’
threshold (7) can “fall back” on the Bonferroni threshold when needed, at
the price of a minimal threshold increase.

5 Proofs

Proof of Proposition 2.4. Denoting by Σ the common covariance matrix of
the Yi, we have L(Y[W−W ]|W ) = (n−1

∑n
i=1(Wi − W )2)1/2N (0, n−1Σ), and

the result follows because L(Y−µ) = N (0, n−1Σ) and φ is positive-homogeneous.

Proof of Proposition 2.6. (i). By independence between W and Y, using the
positive homogeneity, then convexity of φ, for every realization of Y we have:

AW φ
(
Y − µ

)
= φ

(
E

[
1

n

n∑

i=1

∣∣Wi − W
∣∣ (Yi − µ

) ∣∣∣∣Y
])

≤ E

[
φ

(
1

n

n∑

i=1

∣∣Wi − W
∣∣ (Yi − µ

)
) ∣∣∣∣Y

]
.

We integrate with respect to Y, and use the symmetry of the Yi with
respect to µ and again the independence between W and Y to show finally
that

AW E
[
φ
(
Y − µ

)]
≤ E

[
φ

(
1

n

n∑

i=1

∣∣Wi − W
∣∣ (Yi − µ

)
)]

= E

[
φ

(
1

n

n∑

i=1

(
Wi − W

) (
Yi − µ

)
)]

= E

[
φ
(
Y[W−W ]

)]
.

We obtain (ii) via the triangle inequality and the same symmetrization trick.

Proof of Proposition 2.8. We denote by A a square root of the common co-
variance matrix of the Yi and by (ak)1≤k≤K the rows of A. If G is a K ×m
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matrix with standard centered i.i.d. Gaussian entries, then AG has the same
distribution as Y−µ . We let for all ζ ∈

(
R

K
)n

, T1(ζ) := φ
(

1
n

∑n
i=1 Aζi

)
and

T2(ζ) := Eφ
(

1
n

∑n
i=1(Wi − W )Aζi

)
. From the Gaussian concentration theo-

rem of Cirel’son, Ibragimov and Sudakov (see for example [Mas05], Theorem
3.8), we just need to prove that T1 (resp. T2) is a Lipschitz function with
constant ‖σ‖p /

√
n (resp. ‖σ‖p CW /n), for the Euclidean norm ‖·‖2,Kn on(

R
K
)n

. Let ζ, ζ ′ ∈
(
R

K
)n

. Using Cauchy-Schwartz’s inequality coordinate-
wise and ‖ak‖2 = σk, we deduce

|T1(ζ) − T1(ζ
′)| ≤

∥∥∥∥∥
1

n

n∑

i=1

A (ζi − ζ ′
i)

∥∥∥∥∥
p

≤ ‖σ‖p

∥∥∥∥∥
1

n

n∑

i=1

(ζi − ζ ′
i)

∥∥∥∥∥
2

.

Therefore, we get |T1(ζ) − T1(ζ
′)| ≤ ‖σ‖p√

n
‖ζ − ζ ′‖2,Kn by convexity of x ∈

R
K → ‖x‖2

2, and we obtain (i). For T2, we use the same method as for T1 :

|T2(ζ) − T2(ζ
′)| ≤ ‖σ‖p E

∥∥∥∥∥
1

n

n∑

i=1

(Wi − W )(ζi − ζ ′
i)

∥∥∥∥∥
2

≤
‖σ‖p

n

√√√√
E

∥∥∥∥∥

n∑

i=1

(Wi − W )(ζi − ζ ′
i)

∥∥∥∥∥

2

2

. (15)

We now develop
∥∥∑n

i=1(Wi − W )(ζi − ζ ′
i)
∥∥2

2
in the Euclidean space R

K (note

that from
(∑n

i=1(Wi − W )
)2

= 0, we have E(W1 −W )(W2 −W ) = −C2
W /n)

:

E

∥∥∥∥∥

n∑

i=1

(Wi − W )(ζi − ζ ′
i)

∥∥∥∥∥

2

2

= C2
W (1 − 1/n)

n∑

i=1

‖ζi − ζ ′
i‖2

2 −
C2

W

n

∑

i6=j

< ζi − ζ ′
i, ζj − ζ ′

j >

= C2
W

n∑

i=1

‖ζi − ζ ′
i‖2

2 −
C2

W

n

∥∥∥∥∥

n∑

i=1

(ζi − ζ ′
i)

∥∥∥∥∥

2

2

.

Consequently,

E

∥∥∥∥∥

n∑

i=1

(
Wi − W

)
(ζi − ζ ′

i)

∥∥∥∥∥

2

2

≤ C2
W

n∑

i=1

‖ζi − ζ ′
i‖2

2 ≤ C2
W ‖ζ − ζ ′‖2

2,Kn . (16)

Combining expression (15) and (16), we find that T2 is ‖σ‖p CW /n-Lipschitz.
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Proof of Theorem 2.1. The case (BA)(p, M) and (SA) is obtained by com-
bining Proposition 2.6 and McDiarmid’s inequality (see for instance [Fro04]).
The (GA) case is a straightforward consequence of Proposition 2.4 and the
proof of Proposition 2.8.

Proof of Corollary 2.2. From Proposition 2.8 (i), with probability at least
1−α(1−δ), φ

(
Y − µ

)
is upper bounded by the minimum between tα(1−δ) and

Eφ
(
Y − µ

)
+

‖σ‖pΦ
−1

(α(1−δ)/2)√
n

(because these thresholds are deterministic). In

addition, Proposition 2.4 and Proposition 2.8 (ii) give that with probability

at least 1 − αδ, Eφ
(
Y − µ

)
≤ E(φ(Y−µ)|Y)

BW
+

‖σ‖pCW

BW n
Φ

−1
(αδ/2). The result

follows by combining the two last expressions.

Proof of Proposition 3.1. Remember the following inequality coming from
the definition of the quantile qα : for any fixed Y

PW

[
φ
(
Y[W ]

)
> qα(φ,Y)

]
≤ α ≤ PW

[
φ
(
Y[W ]

)
≥ qα(φ,Y)

]
, (17)

which will be useful in this proof. We have

PY

[
φ(Y − µ) > qα(φ,Y − µ)

]
= EW

[
PY

[
φ
(
(Y − µ)[W ]

)
> qα(φ, (Y − µ)[W ])

]]

= EY

[
PW

[
φ
(
(Y − µ)[W ]

)
> qα(φ,Y − µ)

]]

≤ α . (18)

The first equality is due to the fact that the distribution of Y satisfies as-
sumption (SA), hence the distribution of (Y − µ) invariant by reweight-
ing by (arbitrary) signs W ∈ {−1, 1}n . In the second equality we used
Fubini’s theorem and the fact that for any arbitrary signs W as above
qα(φ, (Y − µ)[W ]) = qα(φ,Y − µ) ; finally the last inequality comes from
(17). Let us define the event

Ω =
{
Y s.t. qα(φ,Y − µ) ≤ qα(1−δ)(φ,Y − Y) + f(Y)

}
;

then we have using (18) :

P
[
φ(Y − µ) > qα(1−δ)(φ,Y −Y) + f(Y)

]
≤ P

[
φ(Y − µ) > qα(φ,Y − µ)

]
+ P [Y ∈ Ωc]

≤ α + P [Y ∈ Ωc] . (19)

We now concentrate on the event Ωc . Using the subadditivity of φ, and

the fact that (Y − µ)[W ] = (Y − Y)[W ] + W (Y − µ) , we have for any fixed
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Y ∈ Ωc:

α ≤ PW

[
φ((Y − µ)[W ]) ≥ qα(φ,Y − µ)

]

≤ PW

[
φ((Y − µ)[W ]) > qα(1−δ)(φ,Y −Y) + f(Y)

]

≤ PW

[
φ((Y − Y)[W ]) > qα(1−δ)(φ,Y − Y)

]
+ PW

[
φ(W (Y − µ)) > f(Y)

]

≤ α(1 − δ) + PW

[
φ(W (Y − µ)) > f(Y)

]
.

For the first and last inequalities we have used (17), and for the second
inequality the definition of Ωc. From this we deduce that

Ωc ⊂
{
Y s.t. PW

[
φ(W (Y − µ)) > f(Y)

]
≥ αδ

}
.

Now using the homogeneity of φ, and the fact that both φ and f are non-
negative:

PW

[
φ(W (Y − µ)) > f(Y)

]
= PW

[∣∣W
∣∣ > f(Y)

φ(sign(W )(Y − µ))

]

≤ PW

[
∣∣W
∣∣ > f(Y)

φ̃(Y − µ)

]

= 2P

[
1

n
(2Bn, 1

2

− n) >
f(Y)

φ̃(Y − µ)

∣∣∣∣Y
]

,

where Bn, 1
2

denotes a binomial (n, 1
2
) variable (independent of Y). From the

two last displays we conclude

Ωc ⊂
{

Y s.t. φ̃(Y − µ) >
n

2B
(
n, αδ

2

)
− n

f(Y)

}
,

which, put back in (19), leads to the desired conclusion.
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