40 research outputs found

    Measuring routine childhood vaccination coverage in 204 countries and territories, 1980-2019 : a systematic analysis for the Global Burden of Disease Study 2020, Release 1

    Get PDF
    Background Measuring routine childhood vaccination is crucial to inform global vaccine policies and programme implementation, and to track progress towards targets set by the Global Vaccine Action Plan (GVAP) and Immunization Agenda 2030. Robust estimates of routine vaccine coverage are needed to identify past successes and persistent vulnerabilities. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020, Release 1, we did a systematic analysis of global, regional, and national vaccine coverage trends using a statistical framework, by vaccine and over time. Methods For this analysis we collated 55 326 country-specific, cohort-specific, year-specific, vaccine-specific, and dosespecific observations of routine childhood vaccination coverage between 1980 and 2019. Using spatiotemporal Gaussian process regression, we produced location-specific and year-specific estimates of 11 routine childhood vaccine coverage indicators for 204 countries and territories from 1980 to 2019, adjusting for biases in countryreported data and reflecting reported stockouts and supply disruptions. We analysed global and regional trends in coverage and numbers of zero-dose children (defined as those who never received a diphtheria-tetanus-pertussis [DTP] vaccine dose), progress towards GVAP targets, and the relationship between vaccine coverage and sociodemographic development. Findings By 2019, global coverage of third-dose DTP (DTP3; 81.6% [95% uncertainty interval 80.4-82 .7]) more than doubled from levels estimated in 1980 (39.9% [37.5-42.1]), as did global coverage of the first-dose measles-containing vaccine (MCV1; from 38.5% [35.4-41.3] in 1980 to 83.6% [82.3-84.8] in 2019). Third- dose polio vaccine (Pol3) coverage also increased, from 42.6% (41.4-44.1) in 1980 to 79.8% (78.4-81.1) in 2019, and global coverage of newer vaccines increased rapidly between 2000 and 2019. The global number of zero-dose children fell by nearly 75% between 1980 and 2019, from 56.8 million (52.6-60. 9) to 14.5 million (13.4-15.9). However, over the past decade, global vaccine coverage broadly plateaued; 94 countries and territories recorded decreasing DTP3 coverage since 2010. Only 11 countries and territories were estimated to have reached the national GVAP target of at least 90% coverage for all assessed vaccines in 2019. Interpretation After achieving large gains in childhood vaccine coverage worldwide, in much of the world this progress was stalled or reversed from 2010 to 2019. These findings underscore the importance of revisiting routine immunisation strategies and programmatic approaches, recentring service delivery around equity and underserved populations. Strengthening vaccine data and monitoring systems is crucial to these pursuits, now and through to 2030, to ensure that all children have access to, and can benefit from, lifesaving vaccines. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Adolescent transport and unintentional injuries: a systematic analysis using the Global Burden of Disease Study 2019

    Get PDF
    Background: Globally, transport and unintentional injuries persist as leading preventable causes of mortality and morbidity for adolescents. We sought to report comprehensive trends in injury-related mortality and morbidity for adolescents aged 10–24 years during the past three decades. Methods: Using the Global Burden of Disease, Injuries, and Risk Factors 2019 Study, we analysed mortality and disability-adjusted life-years (DALYs) attributed to transport and unintentional injuries for adolescents in 204 countries. Burden is reported in absolute numbers and age-standardised rates per 100 000 population by sex, age group (10–14, 15–19, and 20–24 years), and sociodemographic index (SDI) with 95% uncertainty intervals (UIs). We report percentage changes in deaths and DALYs between 1990 and 2019. Findings: In 2019, 369 061 deaths (of which 214 337 [58%] were transport related) and 31·1 million DALYs (of which 16·2 million [52%] were transport related) among adolescents aged 10–24 years were caused by transport and unintentional injuries combined. If compared with other causes, transport and unintentional injuries combined accounted for 25% of deaths and 14% of DALYs in 2019, and showed little improvement from 1990 when such injuries accounted for 26% of adolescent deaths and 17% of adolescent DALYs. Throughout adolescence, transport and unintentional injury fatality rates increased by age group. The unintentional injury burden was higher among males than females for all injury types, except for injuries related to fire, heat, and hot substances, or to adverse effects of medical treatment. From 1990 to 2019, global mortality rates declined by 34·4% (from 17·5 to 11·5 per 100 000) for transport injuries, and by 47·7% (from 15·9 to 8·3 per 100 000) for unintentional injuries. However, in low-SDI nations the absolute number of deaths increased (by 80·5% to 42 774 for transport injuries and by 39·4% to 31 961 for unintentional injuries). In the high-SDI quintile in 2010–19, the rate per 100 000 of transport injury DALYs was reduced by 16·7%, from 838 in 2010 to 699 in 2019. This was a substantially slower pace of reduction compared with the 48·5% reduction between 1990 and 2010, from 1626 per 100 000 in 1990 to 838 per 100 000 in 2010. Between 2010 and 2019, the rate of unintentional injury DALYs per 100 000 also remained largely unchanged in high-SDI countries (555 in 2010 vs 554 in 2019; 0·2% reduction). The number and rate of adolescent deaths and DALYs owing to environmental heat and cold exposure increased for the high-SDI quintile during 2010–19. Interpretation: As other causes of mortality are addressed, inadequate progress in reducing transport and unintentional injury mortality as a proportion of adolescent deaths becomes apparent. The relative shift in the burden of injury from high-SDI countries to low and low–middle-SDI countries necessitates focused action, including global donor, government, and industry investment in injury prevention. The persisting burden of DALYs related to transport and unintentional injuries indicates a need to prioritise innovative measures for the primary prevention of adolescent injury. Funding: Bill & Melinda Gates Foundation

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global, regional, and national mortality among young people aged 10-24 years, 1950-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Documentation of patterns and long-term trends in mortality in young people, which reflect huge changes in demographic and social determinants of adolescent health, enables identification of global investment priorities for this age group. We aimed to analyse data on the number of deaths, years of life lost, and mortality rates by sex and age group in people aged 10-24 years in 204 countries and territories from 1950 to 2019 by use of estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We report trends in estimated total numbers of deaths and mortality rate per 100 000 population in young people aged 10-24 years by age group (10-14 years, 15-19 years, and 20-24 years) and sex in 204 countries and territories between 1950 and 2019 for all causes, and between 1980 and 2019 by cause of death. We analyse variation in outcomes by region, age group, and sex, and compare annual rate of change in mortality in young people aged 10-24 years with that in children aged 0-9 years from 1990 to 2019. We then analyse the association between mortality in people aged 10-24 years and socioeconomic development using the GBD Socio-demographic Index (SDI), a composite measure based on average national educational attainment in people older than 15 years, total fertility rate in people younger than 25 years, and income per capita. We assess the association between SDI and all-cause mortality in 2019, and analyse the ratio of observed to expected mortality by SDI using the most recent available data release (2017). Findings In 2019 there were 1.49 million deaths (95% uncertainty interval 1.39-1.59) worldwide in people aged 10-24 years, of which 61% occurred in males. 32.7% of all adolescent deaths were due to transport injuries, unintentional injuries, or interpersonal violence and conflict; 32.1% were due to communicable, nutritional, or maternal causes; 27.0% were due to non-communicable diseases; and 8.2% were due to self-harm. Since 1950, deaths in this age group decreased by 30.0% in females and 15.3% in males, and sex-based differences in mortality rate have widened in most regions of the world. Geographical variation has also increased, particularly in people aged 10-14 years. Since 1980, communicable and maternal causes of death have decreased sharply as a proportion of total deaths in most GBD super-regions, but remain some of the most common causes in sub-Saharan Africa and south Asia, where more than half of all adolescent deaths occur. Annual percentage decrease in all-cause mortality rate since 1990 in adolescents aged 15-19 years was 1.3% in males and 1.6% in females, almost half that of males aged 1-4 years (2.4%), and around a third less than in females aged 1-4 years (2.5%). The proportion of global deaths in people aged 0-24 years that occurred in people aged 10-24 years more than doubled between 1950 and 2019, from 9.5% to 21.6%. Interpretation Variation in adolescent mortality between countries and by sex is widening, driven by poor progress in reducing deaths in males and older adolescents. Improving global adolescent mortality will require action to address the specific vulnerabilities of this age group, which are being overlooked. Furthermore, indirect effects of the COVID-19 pandemic are likely to jeopardise efforts to improve health outcomes including mortality in young people aged 10-24 years. There is an urgent need to respond to the changing global burden of adolescent mortality, address inequities where they occur, and improve the availability and quality of primary mortality data in this age group. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd

    Pharmacokinetic variability of anticancer drugs : application with vinorelbine and lapatinib

    No full text
    La mise en évidence de la variabilité pharmacocinétique et/ou pharmacodynamique permet l’optimisation de l’utilisation des cytotoxiques. L’association des thérapies ciblées à la chimiothérapie conventionnelle peut apporter des avantages supplémentaires en termes de bénéfice thérapeutique, mais aussi peut provoquer des interactions médicamenteuses et augmenter les variabilités interindividuelles. Les interactions médicamenteuses sont maintenant connues pour avoir un impact significatif sur l'élimination des médicaments.Le premier volet de ces travaux consiste à mesurer les concentrations sanguines de deux molécules (le lapatinib et la vinorelbine) chez les patientes et à les utiliser pour la modélisation pharmacocinétique. Cette modélisation a clairement montré l’influence du poids et du nombre des plaquettes sur la pharmacocinétique de la vinorelbine permettant ainsi de diminuer les variabilités pharmacocinétiques. Elle a également mis en évidence l’influence du lapatinib sur la pharmacocinétique de la vinorelbine. Cependant, compte tenu de l’absence de groupe témoin, nous n’avons pas réussi à obtenir une significativité statistique pour ces résultats. En parallèle, aucune influence de la vinorelbine sur le comportement pharmacocinétique du lapatinib n’a été mise en évidence.Le second volet concerne la modélisation de la réponse et de la tolérance des patientes pour cette association médicamenteuse (modélisation pharmacodynamique). La neutropénie est la toxicité dose-limitante et comme le lapatinib n’est pas connu pour être myélotoxique, nous avons modélisé cette toxicité par rapport au comportement pharmacocinétique de la vinorelbine. Là encore, nous avons observé une très forte tendance quant à l’influence du lapatinib sur la myélotoxicité de la vinorelbine. Concernant l’efficacité de cette association, la modélisation de l’évolution de la croissance tumorale a mis en évidence une synergie d’action entre ces deux molécules. A notre connaissance c’est la première fois qu’une telle modélisation tant du point de vue de la tolérance que de celui de la réponse, est réalisée lors d’une association de chimiothérapie classique et d’une thérapeutique ciblée.La modélisation PK-PD de population des médicaments anticancéreux peut apporter une aide précieuse aux cliniciens dans ce domaine. Elle peut également être essentielle dans la prise de décision clinique précoce.The identification of sources of pharmacokinetic and / or pharmacodynamic variabilities, optimizes the use of cytotoxic agents. The combination of targeted therapies with conventional drugs may provide additional benefits in terms of therapeutic benefit, but also can cause drug interactions and increased variability. Drug interactions are known to have a significant impact on drug disposition.The first part of this work is to measure blood concentrations of two molecules (lapatinib and vinorelbine) in patients and to perform pharmacokinetic modeling. This modeling clearly showed the influence of weight and the platelet number on the pharmacokinetics of vinorelbine reducing thereby the pharmacokinetic variabilities. It also highlighted the influence of lapatinib on the pharmacokinetics of vinorelbine. However, due to the lack of control group, we failed to obtain statistical significance for these results. In parallel, no effect of vinorelbine on the pharmacokinetics of lapatinib has been detected.The second part concerns the modeling of the response and tolerance of patients for this drug combination (pharmacodynamic modeling). Neutropenia was detected as the dose-limiting toxicity of the combination and the fact that lapatinib is not known to be myelotoxic, we performed toxicity modeling based on the pharmacokinetics of vinorelbine. Again, we observed a strong tendency on the influence of lapatinib on the myelotoxicity of vinorelbine. Regarding the efficacy of this combination, tumor growth modeling showed a synergistic action between the two molecules. To our knowledge this is the first time that such a model, both in terms of tolerance and response, is implemented in a combination of conventional chemotherapy and targeted therapy.Population PK-PD modeling of cancer drugs can provide valuable assistance to clinicians in this field. It can also be essential in the early clinical decision making

    Variabilité pharmacocinétique des anti-cancéreux : Application à la vinorelbine et au lapatinib

    No full text
    The identification of sources of pharmacokinetic and / or pharmacodynamic variabilities, optimizes the use of cytotoxic agents. The combination of targeted therapies with conventional drugs may provide additional benefits in terms of therapeutic benefit, but also can cause drug interactions and increased variability. Drug interactions are known to have a significant impact on drug disposition.The first part of this work is to measure blood concentrations of two molecules (lapatinib and vinorelbine) in patients and to perform pharmacokinetic modeling. This modeling clearly showed the influence of weight and the platelet number on the pharmacokinetics of vinorelbine reducing thereby the pharmacokinetic variabilities. It also highlighted the influence of lapatinib on the pharmacokinetics of vinorelbine. However, due to the lack of control group, we failed to obtain statistical significance for these results. In parallel, no effect of vinorelbine on the pharmacokinetics of lapatinib has been detected.The second part concerns the modeling of the response and tolerance of patients for this drug combination (pharmacodynamic modeling). Neutropenia was detected as the dose-limiting toxicity of the combination and the fact that lapatinib is not known to be myelotoxic, we performed toxicity modeling based on the pharmacokinetics of vinorelbine. Again, we observed a strong tendency on the influence of lapatinib on the myelotoxicity of vinorelbine. Regarding the efficacy of this combination, tumor growth modeling showed a synergistic action between the two molecules. To our knowledge this is the first time that such a model, both in terms of tolerance and response, is implemented in a combination of conventional chemotherapy and targeted therapy.Population PK-PD modeling of cancer drugs can provide valuable assistance to clinicians in this field. It can also be essential in the early clinical decision making.La mise en évidence de la variabilité pharmacocinétique et/ou pharmacodynamique permet l’optimisation de l’utilisation des cytotoxiques. L’association des thérapies ciblées à la chimiothérapie conventionnelle peut apporter des avantages supplémentaires en termes de bénéfice thérapeutique, mais aussi peut provoquer des interactions médicamenteuses et augmenter les variabilités interindividuelles. Les interactions médicamenteuses sont maintenant connues pour avoir un impact significatif sur l'élimination des médicaments.Le premier volet de ces travaux consiste à mesurer les concentrations sanguines de deux molécules (le lapatinib et la vinorelbine) chez les patientes et à les utiliser pour la modélisation pharmacocinétique. Cette modélisation a clairement montré l’influence du poids et du nombre des plaquettes sur la pharmacocinétique de la vinorelbine permettant ainsi de diminuer les variabilités pharmacocinétiques. Elle a également mis en évidence l’influence du lapatinib sur la pharmacocinétique de la vinorelbine. Cependant, compte tenu de l’absence de groupe témoin, nous n’avons pas réussi à obtenir une significativité statistique pour ces résultats. En parallèle, aucune influence de la vinorelbine sur le comportement pharmacocinétique du lapatinib n’a été mise en évidence.Le second volet concerne la modélisation de la réponse et de la tolérance des patientes pour cette association médicamenteuse (modélisation pharmacodynamique). La neutropénie est la toxicité dose-limitante et comme le lapatinib n’est pas connu pour être myélotoxique, nous avons modélisé cette toxicité par rapport au comportement pharmacocinétique de la vinorelbine. Là encore, nous avons observé une très forte tendance quant à l’influence du lapatinib sur la myélotoxicité de la vinorelbine. Concernant l’efficacité de cette association, la modélisation de l’évolution de la croissance tumorale a mis en évidence une synergie d’action entre ces deux molécules. A notre connaissance c’est la première fois qu’une telle modélisation tant du point de vue de la tolérance que de celui de la réponse, est réalisée lors d’une association de chimiothérapie classique et d’une thérapeutique ciblée.La modélisation PK-PD de population des médicaments anticancéreux peut apporter une aide précieuse aux cliniciens dans ce domaine. Elle peut également être essentielle dans la prise de décision clinique précoce

    Variabilité pharmacocinétique des anti-cancéreux (Application à la vinorelbine et au lapatinib)

    No full text
    La mise en évidence de la variabilité pharmacocinétique et/ou pharmacodynamique permet l optimisation de l utilisation des cytotoxiques. L association des thérapies ciblées à la chimiothérapie conventionnelle peut apporter des avantages supplémentaires en termes de bénéfice thérapeutique, mais aussi peut provoquer des interactions médicamenteuses et augmenter les variabilités interindividuelles. Les interactions médicamenteuses sont maintenant connues pour avoir un impact significatif sur l'élimination des médicaments.Le premier volet de ces travaux consiste à mesurer les concentrations sanguines de deux molécules (le lapatinib et la vinorelbine) chez les patientes et à les utiliser pour la modélisation pharmacocinétique. Cette modélisation a clairement montré l influence du poids et du nombre des plaquettes sur la pharmacocinétique de la vinorelbine permettant ainsi de diminuer les variabilités pharmacocinétiques. Elle a également mis en évidence l influence du lapatinib sur la pharmacocinétique de la vinorelbine. Cependant, compte tenu de l absence de groupe témoin, nous n avons pas réussi à obtenir une significativité statistique pour ces résultats. En parallèle, aucune influence de la vinorelbine sur le comportement pharmacocinétique du lapatinib n a été mise en évidence.Le second volet concerne la modélisation de la réponse et de la tolérance des patientes pour cette association médicamenteuse (modélisation pharmacodynamique). La neutropénie est la toxicité dose-limitante et comme le lapatinib n est pas connu pour être myélotoxique, nous avons modélisé cette toxicité par rapport au comportement pharmacocinétique de la vinorelbine. Là encore, nous avons observé une très forte tendance quant à l influence du lapatinib sur la myélotoxicité de la vinorelbine. Concernant l efficacité de cette association, la modélisation de l évolution de la croissance tumorale a mis en évidence une synergie d action entre ces deux molécules. A notre connaissance c est la première fois qu une telle modélisation tant du point de vue de la tolérance que de celui de la réponse, est réalisée lors d une association de chimiothérapie classique et d une thérapeutique ciblée.La modélisation PK-PD de population des médicaments anticancéreux peut apporter une aide précieuse aux cliniciens dans ce domaine. Elle peut également être essentielle dans la prise de décision clinique précoce.The identification of sources of pharmacokinetic and / or pharmacodynamic variabilities, optimizes the use of cytotoxic agents. The combination of targeted therapies with conventional drugs may provide additional benefits in terms of therapeutic benefit, but also can cause drug interactions and increased variability. Drug interactions are known to have a significant impact on drug disposition.The first part of this work is to measure blood concentrations of two molecules (lapatinib and vinorelbine) in patients and to perform pharmacokinetic modeling. This modeling clearly showed the influence of weight and the platelet number on the pharmacokinetics of vinorelbine reducing thereby the pharmacokinetic variabilities. It also highlighted the influence of lapatinib on the pharmacokinetics of vinorelbine. However, due to the lack of control group, we failed to obtain statistical significance for these results. In parallel, no effect of vinorelbine on the pharmacokinetics of lapatinib has been detected.The second part concerns the modeling of the response and tolerance of patients for this drug combination (pharmacodynamic modeling). Neutropenia was detected as the dose-limiting toxicity of the combination and the fact that lapatinib is not known to be myelotoxic, we performed toxicity modeling based on the pharmacokinetics of vinorelbine. Again, we observed a strong tendency on the influence of lapatinib on the myelotoxicity of vinorelbine. Regarding the efficacy of this combination, tumor growth modeling showed a synergistic action between the two molecules. To our knowledge this is the first time that such a model, both in terms of tolerance and response, is implemented in a combination of conventional chemotherapy and targeted therapy.Population PK-PD modeling of cancer drugs can provide valuable assistance to clinicians in this field. It can also be essential in the early clinical decision making.PARIS5-Bibliotheque electronique (751069902) / SudocPARIS-BIUM-Bib. électronique (751069903) / SudocSudocFranceF

    Targeting Adrenomedullin in Oncology: A Feasible Strategy With Potential as Much More Than an Alternative Anti-Angiogenic Therapy

    No full text
    International audiencetumor angiogenesis, metastasis and growth following treatment with AM-neutralizing antibodies, AM receptor antagonists, or AM receptor interference. Anti-AM therapy is a promising strategy to be explored in oncology, not only as an anti-angiogenic alternative in the context of acquired resistance to VEGF treatment, but also as a potential antimetastatic approach
    corecore