123 research outputs found

    An Assessment of Climate Induced Increase in Soil Water Availability for Soil Bacterial Communities Exposed to Long-Term Differential Phosphorus Fertilization

    Get PDF
    The fate of future food productivity depends primarily upon the health of soil used for cultivation. For Atlantic Europe, increased precipitation is predicted during both winter and summer months. Interactions between climate change and the fertilization of land used for agriculture are therefore vital to understand. This is particularly relevant for inorganic phosphorus (P) fertilization, which already suffers from resource and sustainability issues. The soil microbiota are a key indicator of soil health and their functioning is critical to plant productivity, playing an important role in nutrient acquisition, particularly when plant available nutrients are limited. A multifactorial, mesocosm study was established to assess the effects of increased soil water availability and inorganic P fertilization, on spring wheat biomass, soil enzymatic activity (dehydrogenase and acid phosphomonoesterase) and soil bacterial community assemblages. Our results highlight the significance of the spring wheat rhizosphere in shaping soil bacterial community assemblages and specific taxa under a moderate soil water content (60%), which was diminished under a higher level of soil water availability (80%). In addition, an interaction between soil water availability and plant presence overrode a long-term bacterial sensitivity to inorganic P fertilization. Together this may have implications for developing sustainable P mobilization through the use of the soil microbiota in future. Spring wheat biomass grown under the higher soil water regime (80%) was reduced compared to the constant water regime (60%) and a reduction in yield could be exacerbated in the future when grown in cultivated soil that have been fertilized with inorganic P. The potential feedback mechanisms for this need now need exploration to understand how future management of crop productivity may be impacted.</p

    Genetics, recombination and clinical features of human rhinovirus species C (HRV-C) infections; interactions of HRV-C with other respiratory viruses

    Get PDF
    To estimate the frequency, molecular epidemiological and clinical associations of infection with the newly described species C variants of human rhinoviruses (HRV), 3243 diagnostic respiratory samples referred for diagnostic testing in Edinburgh were screened using a VP4-encoding region-based selective polymerase chain reaction (PCR) for HRV-C along with parallel PCR testing for 13 other respiratory viruses. HRV-C was the third most frequently detected behind respiratory syncytial virus (RSV) and adenovirus, with 141 infection episodes detected among 1885 subjects over 13 months (7.5%). Infections predominantly targeted the very young (median age 6–12 months; 80% of infections in those &#60;2 years), occurred throughout the year but with peak incidence in early winter months. HRV-C was detected significantly more frequently among subjects with lower (LRT) and upper respiratory tract (URT) disease than controls without respiratory symptoms; HRV-C mono-infections were the second most frequently detected virus (behind RSV) in both disease presentations (6.9% and 7.8% of all cases respectively). HRV variants were classified by VP4/VP2 sequencing into 39 genotypically defined types, increasing the current total worldwide to 60. Through sequence comparisons of the 5â€Čuntranslated region (5â€ČUTR), the majority grouped with species A (n = 96; 68%, described as HRV-Ca), the remainder forming a phylogenetically distinct 5â€ČUTR group (HRV-Cc). Multiple and bidirectional recombination events between HRV-Ca and HRV-Cc variants and with HRV species A represents the most parsimonious explanation for their interspersed phylogeny relationships in the VP4/VP2-encoding region. No difference in age distribution, seasonality or disease associations was identified between HRV-Ca and HRV-Cc variants. HRV-C-infected subjects showed markedly reduced detection frequencies of RSV and other respiratory viruses, providing evidence for a major interfering effect of HRV-C on susceptibility to other respiratory virus infections. HRV-C's disease associations, its prevalence and evidence for interfering effects on other respiratory viruses mandates incorporation of rhinoviruses into future diagnostic virology screening

    Fungal decomposition of river organic matter accelerated by decreasing glacier cover

    Get PDF
    Climate change is altering the structure and functioning of river ecosystems worldwide. In mountain rivers, glacier retreat has been shown to result in systematic changes in aquatic invertebrate biodiversity, but the effects of ice loss on other biological taxa and on whole-ecosystem functions are less well understood. Using data from mountain rivers spanning six countries on four continents, we show that decreasing glacier cover leads to consistent fungal-driven increases in the decomposition rate of cellulose, the world’s most abundant organic polymer. Cellulose decomposition rates were associated with greater abundance of aquatic fungi and the fungal cellulose-degrading Cellobiohydrolase I (cbhI) gene, illustrating the potential for predicting ecosystem-level functions from gene-level data. Clear associations between fungal genes, populations and communities and ecosystem functioning in mountain rivers indicate that ongoing global decreases in glacier cover can be expected to change vital ecosystem functions, including carbon cycle processes

    Best practice guidelines for cetacean tagging

    Get PDF
    Animal-borne electronic instruments (tags) are valuable tools for collecting information on cetacean physiology, behaviour and ecology, and for enhancing conservation and management policies for cetacean populations. Tags allow researchers to track the movement patterns, habitat use andother aspects of the behaviour of animals that are otherwise difficult to observe. They can even be used to monitor the physiology of a tagged animal within its changing environment. Such tags are ideal for identifying and predicting responses to anthropogenic threats, thus facilitating the development of robust mitigation measures. With the increasing need for data best provided by tagging and the increasing availability of tags, such research is becoming more common. Tagging can, however, pose risks to the health and welfare of cetaceans and to personnel involved in tagging operations. Here we provide ‘best practice’ recommendations for cetacean tag design, deployment and follow-up assessment of tagged individuals, compiled by biologists and veterinarians with significant experience in cetacean tagging. This paper is intended to serve as a resource to assist tag users, veterinarians, ethics committees and regulatory agency staff in the implementation of high standards of practice, and to promote the training of specialists in this area. Standardised terminology for describing tag design and illustrations of tag types and attachment sites are provided, along with protocols for tag testing and deployment (both remote and through capture-release), including training of operators. The recommendations emphasise the importance of ensuring that tagging is ethically and scientifically justified for a particular project and that tagging only be used to address bona fide research or conservation questions that are best addressed with tagging, as supported by an exploration of alternative methods. Recommendations are provided for minimising effects on individual animals (e.g. through careful selection of the individual, tag design and implant sterilisation) and for improving knowledge of tagging effects on cetaceans through increased post-tagging monitoring.Publisher PDFPeer reviewe

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search is performed for narrow resonances decaying into WW, WZ, or ZZ boson pairs using 20.3 fb−1 of proton-proton collision data at a centre-of-mass energy of √s=8 TeV recorded with the ATLAS detector at the Large Hadron Collider. Diboson resonances with masses in the range from 1.3 to 3.0 TeV are sought after using the invariant mass distribution of dijets where both jets are tagged as a boson jet, compatible with a highly boosted W or Z boson decaying to quarks, using jet mass and substructure properties. The largest deviation from a smoothly falling background in the observed dijet invariant mass distribution occurs around 2 TeV in the WZ channel, with a global significance of 2.5 standard deviations. Exclusion limits at the 95% confidence level are set on the production cross section times branching ratio for the WZ final state of a new heavy gauge boson, Wâ€Č, and for the WW and ZZ final states of Kaluza-Klein excitations of the graviton in a bulk Randall-Sundrum model, as a function of the resonance mass. Wâ€Č bosons with couplings predicted by the extended gauge model in the mass range from 1.3 to 1.5 TeV are excluded at 95% confidence level

    Search for low-scale gravity signatures in multi-jet final states with the ATLAS detector at √s=8 TeV

    Get PDF
    A search for evidence of physics beyond the Standard Model in final states with multiple high-transverse-momentum jets is performed using 20.3 fb−1 of proton-proton collision data at √s=8 TeV recorded by the ATLAS detector at the LHC. No significant excess of events beyond Standard Model expectations is observed, and upper limits on the visible cross sections for non-Standard Model production of multi-jet final states are set. A wide variety of models for black hole and string ball production and decay are considered, and the upper limit on the cross section times acceptance is as low as 0.16 fb at the 95% confidence level. For these models, excluded regions are also given as function of the main model parameters

    Search for long-lived charginos based on a disappearing-track signature in pp collisions at s √ =13 s=13 TeV with the ATLAS detector

    Get PDF
    This paper presents a search for direct electroweak gaugino or gluino pair production with a chargino nearly mass-degenerate with a stable neutralino. It is based on an integrated luminosity of 36.1 fb−1 of pp collisions at s √ =13 s=13 TeV collected by the ATLAS experiment at the LHC. The final state of interest is a disappearing track accompanied by at least one jet with high transverse momentum from initial-state radiation or by four jets from the gluino decay chain. The use of short track segments reconstructed from the innermost tracking layers significantly improves the sensitivity to short chargino lifetimes. The results are found to be consistent with Standard Model predictions. Exclusion limits are set at 95% confidence level on the mass of charginos and gluinos for different chargino lifetimes. For a pure wino with a lifetime of about 0.2 ns, chargino masses up to 460 GeV are excluded. For the strong production channel, gluino masses up to 1.65 TeV are excluded assuming a chargino mass of 460 GeV and lifetime of 0.2 ns

    Search for heavy resonances decaying into WW in the eΜΌΜ eΜΌΜ final state in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for neutral heavy resonances is performed in the WW→eΜΌΜ decay channel using pp collision data corresponding to an integrated luminosity of 36.1fb−1, collected at a centre-of-mass energy of 13TeV by the ATLAS detector at the Large Hadron Collider. No evidence of such heavy resonances is found. In the search for production via the quark–antiquark annihilation or gluon–gluon fusion process, upper limits on σX×B(X→WW) as a function of the resonance mass are obtained in the mass range between 200GeV GeV and up to 5TeV for various benchmark models: a Higgs-like scalar in different width scenarios, a two-Higgs-doublet model, a heavy vector triplet model, and a warped extra dimensions model. In the vector-boson fusion process, constraints are also obtained on these resonances, as well as on a Higgs boson in the Georgi–Machacek model and a heavy tensor particle coupling only to gauge bosons
    • 

    corecore