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Abstract

To estimate the frequency, molecular epidemiological and clinical associations of infection with the newly described species
C variants of human rhinoviruses (HRV), 3243 diagnostic respiratory samples referred for diagnostic testing in Edinburgh
were screened using a VP4-encoding region-based selective polymerase chain reaction (PCR) for HRV-C along with parallel
PCR testing for 13 other respiratory viruses. HRV-C was the third most frequently detected behind respiratory syncytial virus
(RSV) and adenovirus, with 141 infection episodes detected among 1885 subjects over 13 months (7.5%). Infections
predominantly targeted the very young (median age 6–12 months; 80% of infections in those ,2 years), occurred
throughout the year but with peak incidence in early winter months. HRV-C was detected significantly more frequently
among subjects with lower (LRT) and upper respiratory tract (URT) disease than controls without respiratory symptoms;
HRV-C mono-infections were the second most frequently detected virus (behind RSV) in both disease presentations (6.9%
and 7.8% of all cases respectively). HRV variants were classified by VP4/VP2 sequencing into 39 genotypically defined types,
increasing the current total worldwide to 60. Through sequence comparisons of the 59untranslated region (59UTR), the
majority grouped with species A (n = 96; 68%, described as HRV-Ca), the remainder forming a phylogenetically distinct
59UTR group (HRV-Cc). Multiple and bidirectional recombination events between HRV-Ca and HRV-Cc variants and with HRV
species A represents the most parsimonious explanation for their interspersed phylogeny relationships in the VP4/VP2-
encoding region. No difference in age distribution, seasonality or disease associations was identified between HRV-Ca and
HRV-Cc variants. HRV-C-infected subjects showed markedly reduced detection frequencies of RSV and other respiratory
viruses, providing evidence for a major interfering effect of HRV-C on susceptibility to other respiratory virus infections. HRV-
C’s disease associations, its prevalence and evidence for interfering effects on other respiratory viruses mandates
incorporation of rhinoviruses into future diagnostic virology screening.
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Introduction

Human rhinoviruses (HRVs) are members of the recently

expanded Enterovirus genus within the family Picornaviridae [1].

Their genome organisation and structure are typical for

picornaviruses, possessing a 7200 base single stranded RNA

genome and a non-enveloped virion of approximately 30 nm in

diameter. Human rhinoviruses were originally classifiable into two

species, A and B with likely distinct evolutionary separate origins

within the Enterovirus genus. However, they both share a primary

tropism for the respiratory tract and species B and most species A

variants use the intracellular adhesion molecule-1 receptor for

entry [2]. Being acid-labile, HRVs do not colonise the gut, and are

most commonly transmitted by the respiratory-salivary route, both

by person-to-person contact and airborne transmission. In

temperate countries, infections occur primarily in two peaks, the

first between April and May and the second between September

and October [3,4].

Recent wider use of molecular detection methods in viral

diagnostic screening has revealed the quite unexpected existence of

a further species of human rhinoviruses [5–11]. These species C

rhinoviruses (HRV-Cs) have been shown to be highly prevalent,

with initial studies demonstrating frequent detection of this species

in association with bronchiolitis and other lower respiratory tract

disease [9,12–14], in asthma exacerbations [9,14–16] and otitis

media [17].

HRVs show remarkable genetic and antigenic heterogeneity,

with 74 and 25 serotypes being classified by cross-neutralisation

assays in species A and B viruses respectively. Although species C

variants have not yet been isolated or cultured in vitro and therefore

cannot be formally assigned into separate serotypes, existing

sequence data reveals perhaps even greater genetic heterogeneity

than found within HRV-A and HRV-B. The large number of

distinct genetic lineages identifiable by sequence comparisons in the

VP4/VP2 gene region may thus correspond to different serotypes of

HRV-C [13,18,19]. Furthermore, sequence divergence in VP1 and
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other external regions of the capsid is actually greater than between

different HRV-A or –B serotypes, implying the existence of major

antigenic differences that influence immunological cross-protection

in this newly discovered species. An additional aspect of HRV-C

genetic diversity that has caused confusion in previous attempts at

HRV species identification and typing is the occurrence of

recombination between HRV-A and HRV-A in the 59 untranslated

region (59UTR). While species A and B rhinoviruses have

phylogenetically distinct sequences in this region, those from the

majority of HRV-C variants resemble those of species A [19–21],

while the remainder form a phylogenetically separate group distinct

from HRV-A and HRV-B and other enterovirus species. Initial

data however shows no differences in clinical presentations between

HRV-C variants with A and C 59UTR-like sequences (described as

HRV-Ca and HRV-Cc respectively [19]; this nomenclature will be

followed in the current study).

In the current study we have developed a selective VP4 gene

PCR-based amplification method for specific detection of HRV-C

in respiratory specimens. This has enabled us to screen and

clinically characterise infections occurring over a whole calendar

year (13 months) in a study group of more than 1800 subjects.

Parallel screening for other human respiratory viruses over the

same period allowed us to directly compare their epidemiologies

and association with specific disease presentations.

Results

Development of a Method for Selective Screening of
HRV-C

The intention of the study was the investigation of the incidence,

genetic variability and clinical presentation of HRV-C collected

over a whole calendar year. Non-selective amplification of all

HRV (and HEV) species using previously developed 59UTR-

based PCR methods would have identified an extremely large

number of non-HRV-C positive samples that would preclude

effective screening using pools. To overcome this, we modified the

VP4/VP2-encoding region PCR previously used for genetic

characterisation and (sero)type identification of HRV to enable

selective amplification of HRV-C. The inner antisense primer was

repositioned to a more variable position in the VP4 gene between

species A, B and C sequences to enable selective hybridisation and

strand extension of HRV-C sequences. The sensitivity and

specificity of the selective PCR was evaluated using samples

previously identified as HRV-A, -B and –C variants in a previous

study [18]. All 26 species C samples were positive, along with 1

from 63 species A and 1 from 8 species B samples in the assay

(sensitivity 100%; 98% specificity). Since all positive samples were

to be sequenced in the more variable VP4/VP2-encoding region,

this minor degree of non-specificity would not influence our

identification of HRV-C positive samples for the study.

Detection of HRV-C in Respiratory Samples
Excluding those samples from September 2006 and February

2007 already tested as controls for assay validation, the assay was

used for screening the remaining samples between September

2006 and September 2007. These comprised a total of 2787

samples collected from 1540 study subjects initially combined into

pools of 10 and with positive pools split and re-tested as previously

described [22].

A total of 162 samples were positive on initial screening. On

nucleotide sequencing of the amplified VP4/VP2 gene region, 144

samples were identified as belonging to species C, the remainder

comprising HRV-A (n = 15), HRV-B (n = 2) and human entero-

virus species B (n = 1). The selective primers were therefore

moderately effective at selective amplification of species C variants

with an overall specificity of 89% in a screened population (where

HRV species A predominates; [18]). Screening data from the

selective primers was combined with results from our previous

screening of 456 samples collected in September, 2006 and

February, 2007 [18] to yield a combined sample and study group

of 175 HRV-C positive samples originating from 130 different

individuals, to which further results will refer.

Sequences amplified and sequenced in the VP4/VP2-encoding

region were compared with those obtained in previous studies

(sequence download from GenBank in August, 2009). Amongst the

latter previously deposited sequences, a total of 54 putative HRV-

C (geno)types could be assigned using previously described criteria

(VP4/VP2 gene phylogeny and a pairwise distance threshold of

0.1; [18]). Through the same comparative method, study samples

comprised 39 types (Fig. 1), of which 6 were distinct from

previously deposited HRV-C sequences, producing a combined

total of 60.

Frequencies of re-infection and persistence of HRV-C among

subjects who contributed more than one positive sample over the

study period were estimated by sequence comparisons in the VP4/

VP2-encoding region. For the 13 subjects who were repeatedly

positive for HRV-C in the same calendar month, VP4/VP2 gene

sequences were similar or identical, while those with positive

samples separated by one month or longer were invariably infected

with different HRV-C types. The close concordance between

sample timing and evidence for re-infection allowed us to identify

separate infection episodes in 11 of the subjects. The only exception

to this correlation was a long-term hospitalised patient with acute

myeloid leukaemia, who was regularly screened through the 13

month study period and from whom a total of 12 positive samples

(from 19 collected) were obtained. The close sequence similarity of

HRV-C variants over this period (marked in Fig. 1, subject ID

4235677556) indicated long-term persistent HRV-C infection in the

context of likely severe immunosuppression.

HRV-C Recombination
The 59UTR group of each of the HRV-C positive samples in

the study was determined by amplification and sequencing of a

region between 280–370 in the 59UTR. This analysis was assisted

by inclusion of those published HRV-C for which VP4/VP2 gene

sequences and 59UTR groups had been determined (including the

9 available complete genome sequences of HRV-C; data not

shown). The majority of HRV-C variants characterised in the

current study from separate infection episodes (96 from 141; 68%)

contained species A-like 59UTR sequences, termed HRV-Ca [19].

Clades and HRV-C types with different 59UTR groups (HRV-Ca

and HRV-Cc) were interspersed within the VP4/VP2 gene tree

(Fig. 1), implying the existence of multiple recombination events in

the past diversification of HRV-C. In general, all variants of the

same (geno)type assigned in the VP4/VP2-encoding region

contained the same 59UTR group. There were however, two

exceptions, the HRV-Ca samples R3856/07 clustered closely with

HRV-Cc variants (Fig. 1) and there was a split of one of the

genotypes into HRV-Ca (published sequences from China) HRV-

Cc (7 samples amplified from 5 different study subject from

Edinburgh). These observations imply ongoing, bi-directional and

frequently recent recombination events between rhinoviruses with

different 59UTR groups.

Epidemiological and Clinical Associations of HRV-C
Epidemiological and clinical information on the study samples

and subjects retained through the anonymisation process was used

to compare seasonal and age distribution of HRV-C infections

HRV-C Diversity, Interactions
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with those of other common respiratory virus infections (Figs. 2, 3).

In contrast to RSV and influenza A virus which showed

pronounced increases in incidence in winter months, HRV-C

infections occurred year round with similar incidence in each

calendar month investigated in the current study (Fig. 2A), more

comparable to adenovirus. In contrast, HRV-C resembled RSV

closely in targeting young children and infants, with peak

incidence of both viruses occurring in the 4–6 month age range,

with a younger age distribution than adenovirus infections and

distinct from the wide age range of influenza A virus (Fig. 3). 85%

of HRV-C infections were observed in children younger than 2

years of age. No systematic difference was evident between HRV-

Ca and HRV-Cc in their seasonal distribution or age range of

infection.

Detection frequencies of HRV-C and other respiratory viruses

among subjects presenting with LRTIs, URTIs and those without

respiratory symptoms were compared (Fig. 4). Subjects compared

were those presenting acutely and excluded those with underlying

immunosuppression or severe underlying disease (see Methods for

criteria to assign disease categories). One or more respiratory virus

was detected in 55% of subjects with LRTIs, 65% in URTIs and

22% in those with no relevant respiratory or other symptoms/

diagnoses. Dividing these groups, HRV-C was the only virus

detected in 6.9% of LRTI cases and in 7.8% in URTIs, higher

than in the non-respiratory disease controls (3.7%) and second

only to RSV in detection frequency (15.7% and 10.0%

respectively). HRV-C was twice as frequently detected in subjects

with respiratory disease than in those without relevant symptoms

(p = 0.009 by Chi-squared test). HRV-C was detected in children

in paediatric intensive care units (12%, 14 patients), mostly with

pneumonia and without any other cause identified, in neonatal

intensive care (11%, 4 patients). There was no significant

difference between disease categories in the proportion of HRV-

Ca and HRV-Cc variants.

Virus Interference
Evidence for significant interactions between respiratory viruses

was obtained through comparisons of detection frequencies in

mono- and doubly-infected individuals (Fig. 5). HRV-C was nearly

three times more commonly detected in those co-infected with

adenovirus (16.0%) than in mono-infected subjects (5.8%;

p,0.001). Examples of negative interactions were additionally

observed. Most strikingly, HRV-C had a highly significant effect

on detection frequencies of RSV and other respiratory viruses.

RSV mono-infection was found in 10.7% samples but virtually

absent among HRV-C infected subjects (2.4%, p,0.001). For

other respiratory viruses (excluding AdV), a 3.5-fold reduction in

their infection frequency was observed in HRV-C co-infected

subjects (12.9% to 3.7%; p,0.001). This reduction was greater

than the effect of RSV co-infection on their detection frequency

(,2-fold). In contrast, RSV and the group of other respiratory

viruses did not significantly influence the likelihood of HRV-C

detection; study subjects showed a 5.8% HRV-C mono-infection

frequency compared to 4.6% and 8.6% in those co-infected with

RSV and other respiratory viruses respectively (p.0.05). Together

these observations indicate that it is HRV-C that is inhibiting RSV

and other respiratory infections rather than the converse.

Discussion

Detection Frequency and Type Identification of HRV-C
This study represents one of the first large scale investigations of

the epidemiology and clinical impact focussed on the newly

discovered species C rhinoviruses, and provides evidence for its

Figure 1. Phylogeny of VP4/2 gene sequences amplified from
study subjects and comparison with corresponding full length
sequences of HRV-C and other samples where 59UTR groups had
been previously assigned [19]. Symbols identify HRV-Cc (ie. with
species C-like 59UTR sequences) or HRV-Ca (species A-like) as described in
the key. The neighbour-joining tree was constructed using maximum
composite likelihood distances estimated between sequences in the
amplified region (positions 629–1063 numbered according to the HRV-
B14 reference sequence (NC_001490). Data was bootstrap re-sampled 100
times to assess robustness of branches; values of 70% or greater shown.
Sequences showing incompatibilities between 59UTR and phylogenetic
grouping in VP4/VP2 suggestive of recombination are arrowed.
doi:10.1371/journal.pone.0008518.g001

HRV-C Diversity, Interactions
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Figure 2. Seasonal distribution of (A) HRV-C positive samples and (B) those positive for other common respiratory viruses. The y-axis
depicts the proportion of samples positive from the total in each category (shown above each bar in part A). Frequencies of HRV-C detection have
been subdivided into HRV-Ca and HRV-Cc subgroups.
doi:10.1371/journal.pone.0008518.g002

Figure 3. Age distribution of (A) HRV-C infected subjects and (B) those infected with other common respiratory viruses. The y-axis
depicts the proportion of subjects positive from the total in each category. Frequencies of HRV-C detection have been subdivided into HRV-Ca and
HRV-Cc subgroups.
doi:10.1371/journal.pone.0008518.g003
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significant role in childhood respiratory disease. HRV-C was the

third most prevalent virus in the study population with 141

infection episodes detected among 1885 subjects over a 13 month

period (7.5%), with only RSV (14.2%) and adenovirus (11.5%)

being detected more frequently. Through genetic comparisons of

the VP4/VP2-encoding region, HRV-C infections were found to

be almost invariably acute/resolving with no evidence for

persistence among multiply sampled individuals with the single

exception of an immunocompromised child with AML. Where

re-infection did occur, it was invariably by another HRV-C type,

consistent with the hypothesis that species C types that have been

assigned on the basis of VP4/VP2 gene sequence divergence,

might nevertheless be antigenically distinct and capable of

infection in those exposed previously to heterologous types. These

findings are consistent with previous observations for a 10–21 day

period of virus shedding of HRV in immunocompetent individuals

[23–26]. Given the high incidence of HRV infections and ongoing

exposure to other circulating (sero)types, molecular characterisa-

tion is required to clearly document HRV persistence [27].

Contributing to the high incidence of HRV-C is its genetic (and

likely antigenic) diversity, evident among the variants detected in

the current study and through analysis of published sequences in

the VP4/VP2-encoding region where a total of 60 types could be

provisionally assigned. Although nucleotide sequence divergence

in this region can only be used indirectly to infer antigenic

variability in other parts of the genome, the 10% pairwise distance

threshold in VP4/VP2-encoding region matched the divergence

that effectively categorises HRV species A and B into their 74 and

25 constituent serotypes [18]. Sequence comparisons in the VP4/

VP2-encoding region thus remain a useful provisional assignment

tool until sequences from the whole capsid-encoding region

become available.

HRV-C Recombination
Through sequence comparisons in the 59UTR of the samples

identified as positive on VP4 gene screening, it was possible to

classify the 175 positive samples into two groups, those with a

59UTR sequence similar to species A rhinoviruses described as

HRV-Ca [19] and those clustering separately from species A and

B (and from human enteroviruses) described as HRV-Cc. The

complete genome sequence N10 [19] falls into the HRV-Cc group

while the eight others available, including the species C prototype

strain QPM possess 59UTR sequences groups within HRV species

A sequences (HRV-Ca). Apart from the complete genome

sequences, published sequence data from both the 59UTR and

VP4/VP2 gene regions is only available from 34 Chinese species

C strains [19]. These were classified into 20 HRV-Ca and 14

HRV-Cc variants. Other studies from South Korea [21] and Italy

[26] separated species C variants into HRV-Ca and HRV-Cc

groups, although VP4/VP2 gene sequences were not deposited

onto GenBank/EMBL and could not be included in the analysis in

Fig. 1.

The multiple interspersed phylogenetic positions of VP4/VP2-

encoding sequences from HRV-Ca and HRV-Cc variants is

consistent with multiple inter-species recombination events in the

evolutionary history of human rhinoviruses. We do not know and

likely cannot reconstruct the actual evolutionary steps that created

the complex phylogeny relationships in this genomic region, or the

nature of the ancestors of currently circulating species A and C

Figure 4. Detection frequency of HRV-C and other respiratory
viruses among subjects presenting with symptoms or diagno-
ses of LRTIs, URTIs and those with no relevant (NR) respiratory
symptoms. For the purposes of this analysis, cough was considered a
symptom of URTI.
doi:10.1371/journal.pone.0008518.g004

Figure 5. Analysis of potential virus interference through
comparison of mono- and co-infection frequencies. Each of the
three most frequently detected respiratory viruses (HRV-C, RSV and
AdV) and a combined group of all others (influenza A and B, PIV1-3,
hMPV, coronaviruses, HBoV, HPeV) were separately analysed (x-axis,
top). For each, mono-infection frequencies (unfilled bars) were
compared with those where HRV-C, RSV, AdV and other respiratory
viruses were co-detected (indicated on bottom x-axis, grey filled boxes).
The existence of statistically significant differences in frequencies was
determined by chi-squared test; NS: not significant.
doi:10.1371/journal.pone.0008518.g005
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rhinoviruses. Nevertheless the most parsimonious explanation for

the scattering of HRV-Cc and HRV-Ca variants in the VP4/VP2

tree is a series of recombination events early in the diversification

of the ancestor of HRV-C into the current large number of types

that now exist. Had there been only one recombination event

between species A and C, the descendants of the original

recombinant (with its more recent evolutionary origin relative to

rhinoviruses circulating at that time) would be expected to have

remained more closely related to each other (monophyletic) in

both 59UTR and VP4/VP2 gene regions (and elsewhere in the

genome). This is clearly not the case in the VP4/VP2 gene region

(Fig. 1) or in the 59UTR; published HRV-Ca variants (those of

complete genome sequences and from China) fall into at least two

separate groups in the latter region [19]. The occurrence of

multiple recombination events is consistent with recent observa-

tions for differences in the recombination breakpoints between

different HRV-Ca and HRV-Cc variants [19].

The observation that variants within a species C type usually

had the same 59UTR group (Fig. 1) suggests that most

recombination occurred early in the diversification of HRV-C.

However, a variant in the current study differed in 59UTR group

from other members of the same type (the HRV-Ca strain R3856/

07 clustered with HRV-Cc variants). Although these anomalous

results have been verified by independent re-extraction and re-

amplification of the sample and other members of the clades into

which it grouped, it remains formally possible that the study

subject was co-infected with two different rhinovirus variants. PCR

assays using 59UTR and VP4/VP2 gene primers may have

amplified a different (species A-like) 59UTR sequence from that

possessed by the species C virus sequenced in the VP4 gene.

Notwithstanding this, another recent (intra-typic) recombination

event could be inferred between a cluster of closely related HRV-

Cc variants from the current study and several published HRV-Ca

sequences from China that are of the same species C type (Fig. 1).

Given this evidence for frequent and likely ongoing recombina-

tion, it remains difficult to explain why there are no known species

A rhinovirus recombinants with species C 59UTR sequences;

perhaps ongoing recombination events are restricted to those

between HRV-Ca and HRV-Cc.

In many respects, the phylogeny relationships observed in

rhinoviruses in 59UTR and coding regions resemble those of

human enteroviruses. Santti et al. [28] showed that 59UTR

sequences from HEV-A and -B were similarly interspersed in this

region, as were sequences from species C and D, implying a

similar process of frequent interspecies recombination. Whether

inter-species recombination in rhinovirus species C (or indeed

among enteroviruses) confers an evolutionary advantage remains

unclear. Observations for its (likely) multiple occurrence in species

C and the absence of species A rhinoviruses with group C 59UTR

sequences suggests that possession of group A 59UTR may be

advantageous. However, no evidence was gained in this study for

any distinct epidemiological features or in their clinical presenta-

tions that might originate from hypothesised fitness differences

between HRV-Ca and HRV-Cc groups.

Clinical Presentations of HRV-C
Comprehensive screening for HRV-C over a whole calendar

year enabled seasonality of infections, target groups and clinical

associations of HRV-C infections to be compared with those of

other respiratory viruses. The large number of HRV-C infection

episodes detected over this period allowed a number of relatively

robust conclusions to be drawn. Firstly, the study identifies young

children and infants as the main target group for HRV-C infection

among predominantly hospitalised individuals, with an age profile

comparable to that of RSV. For both viruses, over 80% of

infections were observed in those less than 2 years of age (Fig. 3),

higher than in AdV (77%), influenza A virus (44%) and other

respiratory viruses (63%). The targeting of very young children

was comparable to that observed for HRV species A (80%; [18])

and in previous investigations of all three HRV species

[13,14,29,30]. HRV-C similarly resembled other rhinovirus

species in its seasonal distribution (Fig. 2), circulating throughout

the year as reported for other rhinoviruses [3,13,25,29,31]. It did

not however show the typically higher incidence in autumn found

in other rhinoviruses (and human enteroviruses), and actually

showed higher infection frequencies in winter months. However, a

longer study period would be required to discount the effect of

year-on-year fluctuations in the incidence of species C.

It is increasingly recognised that HRVs are collectively

underestimated as a cause of significant respiratory illness

[27,32]. The frequent detection of HRV-C mono-infection in a

substantial proportion of subjects presenting with LRTIs and

URTIs (Fig. 4) is concordant with recent PCR-based studies

[13–17,29,33,34] that demonstrate a numerically significant role

for HRV-C and other rhinovirus species in severe respiratory

disease requiring hospitalisation in children and exacerbation of

asthma. Detection frequencies of 7–8% for HRV-C in subjects

with URTIs or LRTIs was significantly higher than in those

presenting without respiratory disease in the current study (3.7%),

although this approximate two-fold difference in frequency was

less than observed between these categories for RSV and hMPV

(4- and 6.5-fold), parainfluenza viruses (5-fold), but greater than for

adenoviruses and coronaviruses (1.5- and 1.8-fold) and other

viruses (HBoV/HPeV; equal frequencies). To our knowledge,

there is no published information on the rate of asymptomatic

infections with species C rhinoviruses in hospitalised patients or in

the general community. However, total HRV detection frequen-

cies determined by PCR have produced highly variable results

(2–61%; reviewed in [27]), although averaging to 15% [35].

Taking this latter average estimate, and assuming that species C

variants constitute a quarter or a third of all HRV detections (as

previously found in a subset of the current study population; [18]),

then the 4%–5% predicted prevalence matches closely to that of

the control group in the current study. The increased frequency in

the LRTI and URTI groups is therefore consistent with its

proposed aetiological role in respiratory disease among the

predominantly hospitalised study subjects in the current study.

Further prospectively collected information on disease severity and

symptoms, along with viral load information on study subjects and

controls are, however, required to further substantiate the findings

reported here.

HRV and Co-Infection Frequency
In the current study, all samples were screened for an extended

range of human respiratory viruses (influenza A and B viruses,

RSV, AdV and PIV1-3, hMPV, HBoV, HPeV and coronavirus-

es). This allowed a detailed investigation of frequencies of virus

co-infections among subjects presenting with respiratory illnesses

and potential interactions (positive and negative) between them.

The most striking observation was the evidence for interference of

RSV and other respiratory viruses (except adenovirus) by HRV-C.

For example, the 10.7% detection frequency of RSV among

single-infected individuals was markedly reduced among those

co-infected with HRV-C (2.4%). A comparable reduction was

observed in the ‘‘other virus’’ category (predominantly parainflu-

enza and coronaviruses with a 3.5-fold difference). RSV showed a

more modest effect on detection frequencies in this latter category

(less than two-fold reduction). The further observation that the

HRV-C Diversity, Interactions
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presence of RSV or other viruses did not conversely influence

HRV-C detection frequencies is consistent with HRV-C interfer-

ing with susceptibility to infection with other RNA viruses rather

than the opposite. Negative interactions in detection frequency

and viral loads comparable to those observed between these RNA

virus groups have been previously described between different

pairs of respiratory viruses, and report significant interfering effects

of HRV (all species) on RSV and a range of other RNA viruses

[36,37]. In contrast to the latter study, we additionally found

positive interactions, with significantly higher detection frequen-

cies of RSV and other RNA viruses in AdV-positive samples.

Interpreting the mechanisms underlying these observations of

virus interference is complex. One unknown factor in this and

previous studies that may significantly contribute to the outcome

of a virus/virus interaction is the order of acquisition of infections.

For example, it has been hypothesised that the strong interferon

(IFN) response in the respiratory tract induced by HRV infection

may create an environment hostile to infection with other viruses,

such as RSV [36]. Even though RSV, through expression of NS-1,

can prevent IFN induction on infection of a cell [38], this

countermeasure may be largely ineffective in a respiratory tract

already induced into an antiviral state by prior infection with

HRV-C. If, however, RSV infected the respiratory tract first, then

this would have no effect on the subsequent susceptibility of the

individual to HRV. The rapid and highly cytopathic replication

cycle of rhinoviruses (and enteroviruses) that seems designed to

infect and escape from cells before IFN-mediated responses

become effective, may indeed have a more general interfering

effect on more sensitive RNA (and DNA viruses) that infect the

respiratory tract. Like RSV, successful colonisation of the

respiratory tract by coronaviruses, influenza and parainfluenza

viruses is dependent on a wide variety of evolved mechanisms to

evade intracellular defences [39,40] that are ineffective in pre-

sensitised cells induced by IFN into an antiviral state.

The effect of the order in which infections are acquired may

additionally influence the outcomes of co-infections with adeno-

viruses. AdVs express a plethora of evasion molecules that

substantially influences both the intracellular environment of the

cell it infects and also has a broader paracrine effect on cytokine

production in the respiratory tract and induction of local immunity

[41]. The frequent long term persistence of AdV infections

suggests that a more permissive environment for infection and

replication by other viruses may exist in the respiratory tract of

AdV-infected individual, and underlie the increased detection

frequencies of HRV-C, RSV and other respiratory viruses in co-

infected subjects (Fig. 5).

In summary, this study provides evidence for the substantial

clinical impact of HRV species C infections in young children,

their associations with respiratory disease and interfering effects on

susceptibility to other virus infections. Future studies should

illuminate the extent to which these observations are specific to

species C and which are shared with other rhinoviruses. The

recent surge of interest in rhinoviruses following the unexpected

discovery of species C will undoubtedly contribute to a major re-

appraisal of the roles of all three species in paediatric respiratory

disease.

Materials and Methods

Study Population and Samples
HRV-C was screened for in 2787 respiratory samples from

1540 patients (839 male, 675 female, 26 unknown) referred for

respiratory virus screening to the Specialist Virology Centre

(SVC), Royal Infirmary of Edinburgh between September 2006

and September 2007. The study incorporated previously collected

data from 456 samples collected in September, 2006 and

February, 2007 [18]. Samples comprised predominantly nasopha-

ryngeal or tracheal aspirates or swabs (n = 1771), throat swabs

(n = 619) and bronchoalveolar lavages (n = 155), and were

routinely screened for the following respiratory viruses by PCR:

adenovirus (AdV), influenza A and B, parainfluenza virus types

1–3 (PIV1-3) and respiratory syncytial virus (RSV) using

previously described assays [42,43]. Samples were further tested

for human bocavirus (HBoV), human parechovirus (HPeV) [44],

human metapneumovirus (hMPV) [45] and coronaviruses HKU1,

OC43, 229E and NL63 (Gaunt et al., manuscript in preparation).

All but 94 (2.9%) of the tested samples were referred from hospital

inpatients or from Accident and Emergency Departments. Lower

respiratory tract infections (LRTIs) were identified in subjects

presenting with the following symptoms or diagnoses: bronchiol-

itis, chest infections, pneumonia, respiratory failure, shortness of

breath, apnoea and wheeze; upper respiratory tract infections

(URTIs) with coryza, sore throat, tonsillitis and tracheitis. Cough

was also classified as an URTI symptom, although we acknowl-

edge its additional potential association with lower respiratory

tract disease that leads to some potential misclassification of

disease categories in the absence of other respiratory symptoms.

Subjects with no relevant respiratory symptoms included the

referral categories of vomiting, diarrhoea, trauma and elective

cardiac surgery.

Ethical approval for anonymisation, archiving and screening of

diagnostic specimens was obtained from the Lothian Regional

Ethics Committee (08/S11/02/2). Information retained through

anonymisation included age band, partial postcode, any recorded

symptoms or clinical information, referral source, month of sample

collection, and results of other virological testing of each sample.

HRV-C Screening
RNA was extracted from clinical specimens as previously

described [18]. Reverse transcription of RNA extracted from

individual samples or pools of ten with random hexamers used the

RT system (Promega, United Kingdom) as described previously

[44]. Amplification of the HRV-C VP4/VP2-encoding region

used previously described primers and reaction conditions [18],

with a repositioned antisense inner primer (ATA GTR ATT TGY

TTD AGC CTA TCD GAV A; 59 base at position 888 numbered

here and elsewhere according to the HRV species B reference

sequence NC_001490) for selective amplification of HRV-C (see

Results). Underlined bases were designed to mismatch species A or

B (or both) sequences while being conserved within species C.

Positive samples were subsequently amplified with the four original

VP4/VP2 gene primers [18] and the amplicon directly sequenced.

Sequences generated from this study were edited and aligned with

published sequences using the Simmonics sequence editor v1.7

([46], http://www.virus-evolution.org). Published sequences in-

cluded the 9 complete genome sequences of HRV-C available on

GenBank and all species C VP4(/VP2) gene sequences available

on GenBank in August 2009. HRV-C types were putatively

assigned by phylogenetic analysis and uncorrected pairwise

distance measurements using the previously proposed 10%

divergence threshold [18]. Phylogenetic trees were constructed

by neighbour joining from 100 samplings of maximum-composite-

likelihood (MCL) distances using the MEGA 4.0 software package

[47] with pairwise deletion for missing data. VP4/VP2 sequences

generated in this study have been assigned GenBank accession

numbers GU294336-GU294480.

HRV-C positive samples identified on VP4/VP2 gene screening

were amplified in the 59UTR region for group assignment used a
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hemi-nested PCR with primer 178 (HCA AGY ACT TCT GTY

WCC CCS G) used for both first and second round with the

antisense primers 573 (GAA ACA CGG ACA CCC AAA GTA

GT; outer) and 477 (TTA GCC RCA TTC AGG GGC CGG;

inner) using previously described reaction conditions [18]. For a

small number of samples that were unamplifiable by this method,

SuperScript III (Invitrogen) was used for reverse transcription and

first round PCR. HRV-C variants were assigned into species A

and C 59UTR groups by comparison with reference sequences of

known group between positions 280 and 370.

Statistical Analyses
Statistical tests were conducted using chi squared test with

Yates’ correction and 95% confidence intervals unless stated.
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