83 research outputs found

    Nuclear accessibility of beta-actin mRNA is measured by 3D single-molecule real-time tracking

    Get PDF
    Imaging single proteins or RNAs allows direct visualization of the inner workings of the cell. Typically, three-dimensional (3D) images are acquired by sequentially capturing a series of 2D sections. The time required to step through the sample often impedes imaging of large numbers of rapidly moving molecules. Here we applied multifocus microscopy (MFM) to instantaneously capture 3D single-molecule real-time images in live cells, visualizing cell nuclei at 10 volumes per second. We developed image analysis techniques to analyze messenger RNA (mRNA) diffusion in the entire volume of the nucleus. Combining MFM with precise registration between fluorescently labeled mRNA, nuclear pore complexes, and chromatin, we obtained globally optimal image alignment within 80-nm precision using transformation models. We show that beta-actin mRNAs freely access the entire nucleus and fewer than 60% of mRNAs are more than 0.5 microm away from a nuclear pore, and we do so for the first time accounting for spatial inhomogeneity of nuclear organization

    Accurate Prediction of Secreted Substrates and Identification of a Conserved Putative Secretion Signal for Type III Secretion Systems

    Get PDF
    The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates—effector proteins—are not. We have used a novel computational approach to confidently identify new secreted effectors by integrating protein sequence-based features, including evolutionary measures such as the pattern of homologs in a range of other organisms, G+C content, amino acid composition, and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from the plant pathogen Pseudomonas syringae and validated on a set of effectors from the animal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) after eliminating effectors with detectable sequence similarity. We show that this approach can predict known secreted effectors with high specificity and sensitivity. Furthermore, by considering a large set of effectors from multiple organisms, we computationally identify a common putative secretion signal in the N-terminal 20 residues of secreted effectors. This signal can be used to discriminate 46 out of 68 total known effectors from both organisms, suggesting that it is a real, shared signal applicable to many type III secreted effectors. We use the method to make novel predictions of secreted effectors in S. Typhimurium, some of which have been experimentally validated. We also apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis, identifying the majority of known secreted proteins in addition to providing a number of novel predictions. This approach provides a new way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal

    Anti-tumour necrosis factor discontinuation in inflammatory bowel disease patients in remission: study protocol of a prospective, multicentre, randomized clinical trial

    Get PDF
    Background: Patients with inflammatory bowel disease who achieve remission with anti-tumour necrosis factor (anti-TNF) drugs may have treatment withdrawn due to safety concerns and cost considerations, but there is a lack of prospective, controlled data investigating this strategy. The primary study aim is to compare the rates of clinical remission at 1?year in patients who discontinue anti-TNF treatment versus those who continue treatment. Methods: This is an ongoing, prospective, double-blind, multicentre, randomized, placebo-controlled study in patients with Crohn?s disease or ulcerative colitis who have achieved clinical remission for ?6?months with an anti-TNF treatment and an immunosuppressant. Patients are being randomized 1:1 to discontinue anti-TNF therapy or continue therapy. Randomization stratifies patients by the type of inflammatory bowel disease and drug (infliximab versus adalimumab) at study inclusion. The primary endpoint of the study is sustained clinical remission at 1?year. Other endpoints include endoscopic and radiological activity, patient-reported outcomes (quality of life, work productivity), safety and predictive factors for relapse. The required sample size is 194 patients. In addition to the main analysis (discontinuation versus continuation), subanalyses will include stratification by type of inflammatory bowel disease, phenotype and previous treatment. Biological samples will be obtained to identify factors predictive of relapse after treatment withdrawal. Results: Enrolment began in 2016, and the study is expected to end in 2020. Conclusions: This study will contribute prospective, controlled data on outcomes and predictors of relapse in patients with inflammatory bowel disease after withdrawal of anti-TNF agents following achievement of clinical remission. Clinical trial reference number: EudraCT 2015-001410-1

    Insect pathogens as biological control agents: back to the future

    Get PDF
    The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 15 years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of MCAs, particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for medically important pests including dipteran vectors,. These pathogens combine the advantages of chemical pesticides and microbial control agents (MCAs): they are fast acting, easy to produce at a relatively low cost, easy to formulate, have a long shelf life and allow delivery using conventional application equipment and systemics (i.e. in transgenic plants). Unlike broad spectrum chemical pesticides, B. thuringiensis toxins are selective and negative environmental impact is very limited. Of the several commercially produced MCAs, B. thuringiensis (Bt) has more than 50% of market share. Extensive research, particularly on the molecular mode of action of Bt toxins, has been conducted over the past two decades. The Bt genes used in insect-resistant transgenic crops belong to the Cry and vegetative insecticidal protein families of toxins. Bt has been highly efficacious in pest management of corn and cotton, drastically reducing the amount of broad spectrum chemical insecticides used while being safe for consumers and non-target organisms. Despite successes, the adoption of Bt crops has not been without controversy. Although there is a lack of scientific evidence regarding their detrimental effects, this controversy has created the widespread perception in some quarters that Bt crops are dangerous for the environment. In addition to discovery of more efficacious isolates and toxins, an increase in the use of Bt products and transgenes will rely on innovations in formulation, better delivery systems and ultimately, wider public acceptance of transgenic plants expressing insect-specific Bt toxins. Fungi are ubiquitous natural entomopathogens that often cause epizootics in host insects and possess many desirable traits that favor their development as MCAs. Presently, commercialized microbial pesticides based on entomopathogenic fungi largely occupy niche markets. A variety of molecular tools and technologies have recently allowed reclassification of numerous species based on phylogeny, as well as matching anamorphs (asexual forms) and teleomorphs (sexual forms) of several entomopathogenic taxa in the Phylum Ascomycota. Although these fungi have been traditionally regarded exclusively as pathogens of arthropods, recent studies have demonstrated that they occupy a great diversity of ecological niches. Entomopathogenic fungi are now known to be plant endophytes, plant disease antagonists, rhizosphere colonizers, and plant growth promoters. These newly understood attributes provide possibilities to use fungi in multiple roles. In addition to arthropod pest control, some fungal species could simultaneously suppress plant pathogens and plant parasitic nematodes as well as promote plant growth. A greater understanding of fungal ecology is needed to define their roles in nature and evaluate their limitations in biological control. More efficient mass production, formulation and delivery systems must be devised to supply an ever increasing market. More testing under field conditions is required to identify effects of biotic and abiotic factors on efficacy and persistence. Lastly, greater attention must be paid to their use within integrated pest management programs; in particular, strategies that incorporate fungi in combination with arthropod predators and parasitoids need to be defined to ensure compatibility and maximize efficacy. Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis are potent MCAs. Substantial progress in research and application of EPNs has been made in the past decade. The number of target pests shown to be susceptible to EPNs has continued to increase. Advancements in this regard primarily have been made in soil habitats where EPNs are shielded from environmental extremes, but progress has also been made in use of nematodes in above-ground habitats owing to the development of improved protective formulations. Progress has also resulted from advancements in nematode production technology using both in vivo and in vitro systems; novel application methods such as distribution of infected host cadavers; and nematode strain improvement via enhancement and stabilization of beneficial traits. Innovative research has also yielded insights into the fundamentals of EPN biology including major advances in genomics, nematode-bacterial symbiont interactions, ecological relationships, and foraging behavior. Additional research is needed to leverage these basic findings toward direct improvements in microbial control

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Descripciones de los estados inmaduros de cuatro especies de Phyllophaga, Paranomala y Macrodactylus (Coleoptera: Melolonthidae) de Los Altos de Chiapas, M\ue9xico

    Get PDF
    Third instar larvae of Phyllophaga pilosula (Moser), Paranomala denticollis (Bates), Paranomala trapezifera (Bates) and Macrodactylus fulvescens Bates and the pupa of the latter species, are described with specimens from San Cristobal de Las Casas, Amatenango del Valle and Yalumá-Villahermosa in Comitan, Chiapas, Mexico. Adults of Phyllophaga and Paranomala species were captured and reared in captivity to obtain third-stage larvae. Through the development of third stage larvae of M. fulvescens collected from soil with corn crops, were obtained exuvia of third instar larva, pupae and adults. Drawings of the diagnostic structures and brief comments on the differences with local related species are included.Se describen las larvas de tercer estadio de Phyllophaga pilosula (Moser), Paranomala denticollis (Bates), Paranomala trapezifera (Bates) y Macrodactylus fulvescens Bates, y la pupa de la última especie, procedentes de San Cristóbal de Las Casas, Amatenango del Valle y Yalumá-Villahermosa, municipio de Comitán, Chiapas, México. Las larvas de las especies de Phyllophaga y Paranomalase obtuvieron a partir de la cría desde huevos depositados por hembras en cautiverio. Las larvas de tercer estadio de M. fulvescens fueron recolectadas en suelo con cultivo de maíz hasta obtener exuvias, pupas y adultos. Se incluyen ilustraciones de las estructuras características y comentarios para distinguirlas de especies afines locales

    A new species of Callistethus from Mexico (Coleoptera, Melolonthidae, Rutelinae)

    No full text
    Callistethus tlapanecus, a new species collected in pine forest located at 2160 meters of altitude in eastern mountains of the state of Guerrero, Mexico is described. The morphological characters that distinguish it from other Mexican and Central American species are discussed. The diagnostic characters are illustrated, and a key to Mexican species of Callistethus is also included
    corecore