1,168 research outputs found
Spinning Strings, Black Holes and Stable Closed Timelike Geodesics
The existence and stability under linear perturbation of closed timelike
curves in the spacetime associated to Schwarzschild black hole pierced by a
spinning string are studied. Due to the superposition of the black hole, we
find that the spinning string spacetime is deformed in such a way to allow the
existence of closed timelike geodesics.Comment: 5 pages, RevTex4, some corrections and new material adde
Stability of Closed Timelike Curves in Goedel Universe
We study, in some detail, the linear stability of closed timelike curves in
the Goedel metric. We show that these curves are stable. We present a simple
extension (deformation) of the Goedel metric that contains a class of closed
timelike curves similar to the ones associated to the original Goedel metric.
This extension correspond to the addition of matter whose energy-momentum
tensor is analyzed. We find the conditions to have matter that satisfies the
usual energy conditions. We study the stability of closed timelike curves in
the presence of usual matter as well as in the presence of exotic matter
(matter that does satisfy the above mentioned conditions). We find that the
closed timelike curves in Goedel universe with or whithout the inclusion of
regular or exotic matter are also stable under linear perturbations. We also
find a sort of structural stability.Comment: 12 pages, 11 figures, RevTex, several typos corrected. GRG, in pres
On the Progenitors of Core-Collapse Supernovae
Theory holds that a star born with an initial mass between about 8 and 140
times the mass of the Sun will end its life through the catastrophic
gravitational collapse of its iron core to a neutron star or black hole. This
core collapse process is thought to usually be accompanied by the ejection of
the star's envelope as a supernova. This established theory is now being tested
observationally, with over three dozen core-collapse supernovae having had the
properties of their progenitor stars directly measured through the examination
of high-resolution images taken prior to the explosion. Here I review what has
been learned from these studies and briefly examine the potential impact on
stellar evolution theory, the existence of "failed supernovae", and our
understanding of the core-collapse explosion mechanism.Comment: 7 Pages, invited review accepted for publication by Astrophysics and
Space Science (special HEDLA 2010 issue
Interior of a Schwarzschild black hole revisited
The Schwarzschild solution has played a fundamental conceptual role in
general relativity, and beyond, for instance, regarding event horizons,
spacetime singularities and aspects of quantum field theory in curved
spacetimes. However, one still encounters the existence of misconceptions and a
certain ambiguity inherent in the Schwarzschild solution in the literature. By
taking into account the point of view of an observer in the interior of the
event horizon, one verifies that new conceptual difficulties arise. In this
work, besides providing a very brief pedagogical review, we further analyze the
interior Schwarzschild black hole solution. Firstly, by deducing the interior
metric by considering time-dependent metric coefficients, the interior region
is analyzed without the prejudices inherited from the exterior geometry. We
also pay close attention to several respective cosmological interpretations,
and briefly address some of the difficulties associated to spacetime
singularities. Secondly, we deduce the conserved quantities of null and
timelike geodesics, and discuss several particular cases in some detail.
Thirdly, we examine the Eddington-Finkelstein and Kruskal coordinates directly
from the interior solution. In concluding, it is important to emphasize that
the interior structure of realistic black holes has not been satisfactorily
determined, and is still open to considerable debate.Comment: 15 pages, 7 figures, Revtex4. V2: Version to appear in Foundations of
Physic
Modelling and Interpreting The Effects of Spatial Resolution on Solar Magnetic Field Maps
Different methods for simulating the effects of spatial resolution on
magnetic field maps are compared, including those commonly used for
inter-instrument comparisons. The investigation first uses synthetic data, and
the results are confirmed with {\it Hinode}/SpectroPolarimeter data. Four
methods are examined, one which manipulates the Stokes spectra to simulate
spatial-resolution degradation, and three "post-facto" methods where the
magnetic field maps are manipulated directly. Throughout, statistical
comparisons of the degraded maps with the originals serve to quantify the
outcomes. Overall, we find that areas with inferred magnetic fill fractions
close to unity may be insensitive to optical spatial resolution; areas of
sub-unity fill fractions are very sensitive. Trends with worsening spatial
resolution can include increased average field strength, lower total flux, and
a field vector oriented closer to the line of sight. Further-derived quantities
such as vertical current density show variations even in areas of high average
magnetic fill-fraction. In short, unresolved maps fail to represent the
distribution of the underlying unresolved fields, and the "post-facto" methods
generally do not reproduce the effects of a smaller telescope aperture. It is
argued that selecting a method in order to reconcile disparate spatial
resolution effects should depend on the goal, as one method may better preserve
the field distribution, while another can reproduce spatial resolution
degradation. The results presented should help direct future inter-instrument
comparisons.Comment: Accepted for publication in Solar Physics. The final publication
(including full-resolution figures) will be available at
http://www.springerlink.co
Optomechanical characterization of acoustic modes in a mirror
We present an experimental study of the internal mechanical vibration modes
of a mirror. We determine the frequency repartition of acoustic resonances via
a spectral analysis of the Brownian motion of the mirror, and the spatial
profile of the acoustic modes by monitoring their mechanical response to a
resonant radiation pressure force swept across the mirror surface. We have
applied this technique to mirrors with cylindrical and plano-convex geometries,
and compared the experimental results to theoretical predictions. We have in
particular observed the gaussian modes predicted for plano-convex mirrors.Comment: 8 pages, 8 figures, RevTe
Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification.
Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
- …
