167 research outputs found

    Native American Children and Their Reports of Hope: Construct Validation of the Children's Hope Scale

    Get PDF
    Child reports of hope continue to be utilized as predictors of positive adjustment; however, the utilization of the hope construct has not been assessed within the culturally diverse Native American child group. The present study investigated the applicability of the Hope theory among 96 Native American children in the Midwest. Measures included the Children’s Hope Scale and a Hope Interview. Native American children in the current sample appear to conceptualize hope as a way to reach goals as did the children in the normative sample. Results from the factor analysis demonstrate that the factor structure found in the current study was similar to the factor structure found in the standardization sample. Because of the similar Hope theory conceptualization and factor structure, interventions focused on the positive psychology construct of hope may be applicable within a Native American child population

    Surface modification of starch based biomaterials by oxygen plasma or UV-irradiation

    Get PDF
    Radiation is widely used in biomaterials science for surface modification and sterilization. Herein, we describe the use of plasma and UV-irradiation to improve the biocompatibility of different starch-based blends in terms of cell adhesion and proliferation. Physical and chemical changes, introduced by the used methods, were evaluated by complementary techniques for surface analysis such as scanning electron microscopy, atomic force microscopy, contact angle analysis and X-ray photoelectron spectroscopy. The effect of the changed surface properties on the adhesion of osteoblast-like cells was studied by a direct contact assay. Generally, both treatments resulted in higher number of cells adhered to the modified surfaces. The importance of the improved biocompatibility resulting from the irradiation methods is further supported by the knowledge that both UV and plasma treatments can be used as cost-effective methods for sterilization of biomedical materials and devices.I. P. thanks the FCT for providing her a postdoctoral scholarship (SFRH/BPD/8491/2002). This work was partially supported by FCT, through funds from the POCTI and/or FEDER programs, The European Union funded STREP Project HIPPOCRATES (NNM-3-CT-2003-505758) and the European NoE EXPERTISSUES (NMP3-CT-2004-500283)

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Expression quantitative trait loci of genes predicting outcome are associated with survival of multiple myeloma patients

    Get PDF
    Canadian Institutes of Health Research, Grant/ Award Number: 81274; Huntsman Cancer Institute Pilot Funds; Leukemia Lymphoma Society, Grant/Award Number: 6067-09; the National Institute of Health/National Cancer Institute, Grant/Award Numbers: P30 CA016672, P30 CA042014, P30 CA13148, P50 CA186781, R01 CA107476, R01 CA134674, R01 CA168762, R01 CA186646, R01 CA235026, R21 CA155951, R25 CA092049, R25 CA47888, U54 CA118948; Utah Population Database, Utah Cancer Registry, Huntsman Cancer Center Support Grant, Utah State Department of Health, University of Utah; VicHealth, Cancer Council Victoria, Australian National Health and Medical Research Council, Grant/Award Numbers: 1074383, 209057, 396414; Victorian Cancer Registry, Australian Institute of Health and Welfare, Australian National Death Index, Australian Cancer Database; Mayo Clinic Cancer Center; University of Pisa and DKFZThe authors thank all site investigators that contributed to the studies within the Multiple Myeloma Working Group (Interlymph Consortium), staff involved at each site and, most importantly, the study participants for their contributions that made our study possible. This work was partially supported by intramural funds of University of Pisa and DKFZ. This work was supported in part by the National Institute of Health/National Cancer Institute (R25 CA092049, P30 CA016672, R01 CA134674, P30 CA042014, R01 CA186646, R21 CA155951, U54 CA118948, P30 CA13148, R25 CA47888, R01 CA235026, R01 CA107476, R01 CA168762, P50 CA186781 and the NCI Intramural Research Program), Leukemia Lymphoma Society (6067-09), Huntsman Cancer Institute Pilot Funds, Utah PopulationDatabase, Utah Cancer Registry, Huntsman Cancer Center Support Grant, Utah StateDepartment of Health, University of Utah, Canadian Institutes of Health Research (Grant number 81274), VicHealth, Cancer Council Victoria, Australian National Health and Medical Research Council (Grants 209057, 396414, 1074383), Victorian Cancer Registry, Australian Institute of Health and Welfare, Australian National Death Index, Australian Cancer Database and the Mayo Clinic Cancer Center.Open Access funding enabled and organized by ProjektDEAL.The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.Gene expression profiling can be used for predicting survival in multiple myeloma (MM) and identifying patients who will benefit from particular types of therapy. Some germline single nucleotide polymorphisms (SNPs) act as expression quantitative trait loci (eQTLs) showing strong associations with gene expression levels. We performed an association study to test whether eQTLs of genes reported to be associated with prognosis of MM patients are directly associated with measures of adverse outcome. Using the genotype-tissue expression portal, we identified a total of 16 candidate genes with at least one eQTL SNP associated with their expression with P < 10(-7) either in EBV-transformed B-lymphocytes or whole blood. We genotyped the resulting 22 SNPs in 1327 MM cases from the International Multiple Myeloma rESEarch (IMMEnSE) consortium and examined their association with overall survival (OS) and progression-free survival (PFS), adjusting for age, sex, country of origin and disease stage. Three polymorphisms in two genes (TBRG4-rs1992292, TBRG4-rs2287535 and ENTPD1-rs2153913) showed associations with OS at P < .05, with the former two also associated with PFS. The associations of two polymorphisms in TBRG4 with OS were replicated in 1277 MM cases from the International Lymphoma Epidemiology (InterLymph) Consortium. A meta-analysis of the data from IMMEnSE and InterLymph (2579 cases) showed that TBRG4-rs1992292 is associated with OS (hazard ratio = 1.14, 95% confidence interval 1.04-1.26, P = .007). In conclusion, we found biologically a plausible association between a SNP in TBRG4 and OS of MM patients.Canadian Institutes of Health Research (CIHR) 81274Huntsman Cancer Institute Pilot FundsLeukemia and Lymphoma Society 6067-09United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Cancer Institute (NCI) P30 CA016672 P30 CA042014 P30 CA13148 P50 CA186781 R01 CA107476 R01 CA134674 R01 CA168762 R01 CA186646 R01 CA235026 R21 CA155951 R25 CA092049 R25 CA47888 U54 CA118948Utah Population Database, Utah Cancer Registry, Huntsman Cancer Center Support Grant, Utah State Department of Health, University of UtahVicHealth, Cancer Council Victoria, Australian National Health and Medical Research Council 1074383 209057 396414Victorian Cancer Registry, Australian Institute of Health and Welfare, Australian National Death Index, Australian Cancer DatabaseMayo Clinic Cancer CenterUniversity of PisaHelmholtz Associatio

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    The PLATO 2.0 mission

    Get PDF
    PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4-16 mag). It focusses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science
    corecore