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Abstract Radiation is widely used in biomaterials sci-
ence for surface modification and sterilization. Herein, we

describe the use of plasma and UV-irradiation to improve

the biocompatibility of different starch-based blends in
terms of cell adhesion and proliferation. Physical and

chemical changes, introduced by the used methods, were

evaluated by complementary techniques for surface anal-
ysis such as scanning electron microscopy, atomic force

microscopy, contact angle analysis and X-ray photoelec-

tron spectroscopy. The effect of the changed surface
properties on the adhesion of osteoblast-like cells was

studied by a direct contact assay. Generally, both treat-

ments resulted in higher number of cells adhered to the
modified surfaces. The importance of the improved bio-

compatibility resulting from the irradiation methods is

further supported by the knowledge that both UV and
plasma treatments can be used as cost-effective methods

for sterilization of biomedical materials and devices.

Abbreviations
SEVA-C Blend of starch with poly[ethylene-co-(vinyl

alcohol)] copolymer (50/50 wt%)

SCA Blend of starch with cellulose acetate
(50/50 wt.%)

SPCL Blend of starch with poly(e-caprolactone)
(70/30 wt.%)

RT Room temperature

XPS X-ray photoelectron spectroscopy

FTIR Fourier transform infrared spectroscopy
SEM Scanning electron microscope

AFM Atomic force microscopy

DMEM Dulbecco’s modified Eagle’s medium
FBS Fetal bovine serum

PBS Phosphate buffered saline solution

1 Introduction

Biodegradable polymers have gained a remarkable place in

the biomedical field as materials for fabrication of various

devices and tissue engineering applications [1–4]. The
versatility of their chemical composition, mechanical

properties and consequently the large pool of possible

processing methodologies together with the tailored bio-
degradability at physiological conditions have made them

the obvious material choice for many biomedical applica-

tions [5]. Undoubtedly, all those bulk properties are deter-
minant for the long performance and the proper function of

a biomaterial. However, the initial acceptance or rejection

of an implantable device is dictated by the crosstalk of the
material surface with the bioentities present in the physio-

logical environment. Unfortunately, it is rare that a bio-

material with good bulk properties also posses the surface
characteristics suitable for clinical application and very few

surfaces are truly biocompatible [6]. Therefore, a common

approach is to fabricate biomaterials with adequate bulk
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properties and then to modify those materials using a

specific treatment which results in enhanced surface prop-
erties [7].

Starch-based biomaterials have been proposed for dif-

ferent biomedical applications [5, 8–10]. While there are
several studies describing the optimisation of their degra-

dation behaviour [11, 12] or mechanical properties

[13, 14], only few works focused on their surface properties
and the possibility to tailor them have been published

[15–19]. Targeting an orthopaedic application, Oliveira
et al. [15, 19] have proposed different methodologies for

preparation of calcium phosphate coatings in order to

promote osteoinduction and osteointegration. However, the
main disadvantage of the coating methodologies is the long

term instability of the produced layer and the commonly

observed delamination as a result of mismatch between the
mechanical properties of the polymer substrate and the

formed layer [19]. Wet chemical treatments such as

grafting of acrylic monomers [18] or oxidation by potas-
sium permanganate [17] have been proposed as alternative

approaches for surface modification of starch-based blends.

The treatments have resulted in both apatite layer forma-
tion and cell adhesion/proliferation enhancement on the

modified blends. The wet chemical treatments have

advantages over the coating in several points, including
covalent attachment of graft chains onto a polymer surface

which avoids their delamination and well defined, con-

trolled surface chemistry. However, two main drawbacks
should be also considered [20]:

(i) The depth of the modified layer—due to the interac-
tions between the solvent and the material, the

modification is not always confined to the material’s

surface;
(ii) Ongoing hydrolysis processes—in the case of degrad-

able biopolymers these processes most probably

occur.

Therefore, physical surface modification techniques are

an alternative, allowing partial over passing of those side

effects. Herein, we propose the use of two free-solvent
methods, namely plasma and UV-irradiation, for surface

modification of biodevices fabricated from starch-based
blends. The characteristic feature of these two modification

methods is their action only on the very top surface layer.

Thus, the bulk of substrate remains unchanged and the
modified material keeps the mechanical properties and the

degradation profiles [21, 22].

Plasma treatment is probably the most versatile surface
treatment technique [21, 23, 24]. Different types of gases

can produce unique surface properties required for various

applications. For example, oxygen and oxygen containing
plasmas are commonly employed to modify polymer

surfaces. The treatment can increase the surface energy of

polymers and their hydrophilicity. Similar effect can be
observed [25] when UV-irradiation including surface

photo-oxidation is applied. When polymers are exposed to

UV-light, depending on the level of the chosen power,
chemical (photo-crosslinking, photo-oxidation in air, or

photochemical reactions in reactive atmosphere) or physi-

cal (surface morphology, etc.) changes can occur. The
extent of reaction also depends on the reactants and on the

absorption coefficient, that is, photon absorption as a
function of photon penetration depth [21].

In this study, we have applied UV-irradiation and oxy-

gen-plasma treatment on starch-based biomaterials in order
to achieve the following objectives:

(i) To introduce surface functionality for specific inter-

actions with functional groups and biological items
(e.g., proteins);

(ii) To tailor the surface hydrophilicity;
(iii) To modify the surface morphology in terms of

increasing roughness.

Changes of surface properties such as chemistry,
wettability or roughness are known to control both protein

adsorption and cell response to a biomaterial [6, 26–29].

Generally, surfaces with intermediate wettability are
reported to be better substrates for cell adhesion [30–33].

The introduced functional groups or rather the charge

they bear do also influence the behaviour of both proteins
and cells. Hence, some authors [31, 34, 35] presented

evidences that adsorption does occur also on hydrophilic

surfaces when charge interactions or protein conformation
changes provide the necessary driving force. Therefore,

the hydrophilicity of the surface and its influence on the

protein adsorption is a contradictory issue; this surface
property can’t be considered alone as a premise for

protein adsorption but in combination with the other

surface properties. Whitesides et al. suggested that func-
tional groups that made the surfaces inert for protein

adsorption have some common features; they are (i)

hydrophilic, (ii) hydrogen bond acceptors, and (iii)
overall electrically neutral [36]. Similar results have been

observed for different type of cells. It has been reported
that cells adhere well to surfaces with charged functional

groups such as –COOH and –NH2, whereas poorly to

surfaces carrying –CH3 groups [36, 37]. Surface topog-
raphy is another important property by which the mate-

rial-cell interactions can be altered. While anisotropic

topographies such as ridges and grooves affect the indi-
vidual cell behavior (cells align along the anisotropic

direction), isotropic topographies, such as evenly or ran-

domly distributed pits or protrusions affect collective cell
behaviors [26, 28, 29].

22 J Mater Sci: Mater Med (2010) 21:21–32

123



2 Experimental Part

2.1 Materials

The materials studied in this work were commercially
available (Novamont, Italy) polymeric blends of corn

starch with (i) 40/60 (mol/mol) poly[ethylene-co-(vinyl
alcohol)] copolymer (SEVA-C, 50/50 wt.%); (ii) poly(e-
caprolactone) (SPCL, 30/70 wt.%); (iii) cellulose acetate

(SCA 50/50 wt.%). All materials were supplied in granular

form and were processed by conventional injection
moulding under optimised conditions [38] in a Klockner-

Ferromatik Desma FM20 machine. Produced compact

discs (Ø = 1 cm) were washed prior to any characterisa-
tion in order to remove the soluble plasticizer [39].

2.2 Surface treatments

2.2.1 UV-irradiation

The UV treatment was performed by Hanovia Uvitron

system with a 100 W high-pressure mercury lamp at

254 nm wavelength. The samples were fixed at a distance
of 10 cm and irradiated for 24 h. Then, they were washed

in order to remove the low molecular weight products

produced during the treatment, dried at room temperature
(RT) and characterised.

2.2.2 Plasma surface modification

The plasma treatment was performed in a home-made
reactor (Fig. 1) using previously optimised conditions [40].

Briefly, a pulsed power of 70 W at 180 kHz frequency and

25"C was applied for 15 min. The pressure in the reactor
(3 9 10-3 mbar) was controlled by adjusting the flow rate

of a mixture O2/Ar (20%). The samples were kept 24 h

after being removed from the reactor, then washed, dried
(RT), and characterised.

2.3 Surface characterization

2.3.1 Surface energy/hydrophilicity

The surface wettability of modified and untreated samples

were evaluated by contact angle measurements. The static
contact angle measurements were obtained by sessile drop

method using a contact angle meter OCA15? with high-

performance image processing system from DataPhysics
Instruments, Germany. The used liquid (H2O, 1 ll, HPLC
grade) was added by a motor driven syringe at RT.

Five samples of each material were used and six mea-
surements were carried out per sample. The normality of

the data was checked by applying the Shapiro-Wilk’s

W-test. Student’s t tests for independent samples were
performed for the samples that followed a normal distri-

bution in order to test differences among them. Throughout

the following discussion, the differences were considered
significant if P\ 0.05.

2.3.2 Surface functionality

X-ray Photoelectron spectroscopy (XPS) was used to

characterise the surface chemistry of treated and untreated
samples. The XPS analyses were performed using an

ESCALAB 200A, VG Scientific (UK) with PISCES

software for data acquisition and analysis. Monochromatic
Al (Ka) X-ray source operating at 15 kV (300 W) and a

take-off angle of 90" relative to the sample surface were

used. The measurements were carried out in a Constant
Analyser Energy mode (CAE) with 100 eV pass energy for

survey spectra and 20 eV pass energy for high-resolution

spectra. Data acquisition was performed with a pressure
lower than 1 9 10-6 Pa. Charge referencing was adjusted

by setting the binding energy of the hydrocarbon C1s peak

at 285.0 eV. Overlapping peaks were resolved into their
individual components by XPSPEAK 4.1 software.

The surface chemical analysis was also performed by

Fourier transform infrared spectroscopy (FTIR). The
spectra were recorded on a Perkin Elmer System 1600

FTIR with an attenuated total reflectance device from

SPECAC (MKII Golden Gate, diamond crystal, penetration
depth 20 lm, active area 0.8 mm2). Spectra were taken

with a resolution of 2 cm-1 and were averaged over 36

scans.

2.3.3 Surface morphology

The surface morphology was observed by a scanning

electron microscope (SEM) S360 from Leica (Cambridge,
UK). Prior to SEM examination, a conductive thin gold

film of about 10 nm was deposited (Sputter Jeol JFC 1000)

on the sample surface. Quantitative analysis of the changesFig. 1 Scheme of the used plasma reactor
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of the surface roughness, introduced by the applied treat-

ments was performed by atomic force microscopy (AFM)
in air atmosphere. The analyses were carried out on at least

three spots per sample using tapping mode (Veeco, USA)

connected to a NanoScope III (Veeco, USA) with non-
contacting silicon nanoprobes (ca. 300 kHz, setpoint

2–3 V) from Nanosensors, Switzerland. The surface

roughness was calculated as Sa (average absolute distance
from average flat surface).

2.4 Cell culture

The effect of the applied surface treatments on cell adhe-
sion and proliferation was evaluated by a direct contact

assay. In this assay, an immortalized cell line with an

osteoblastic phenotype was used, since the materials
studied in this work are to be used in bone regeneration

applications. The human osteosarcoma cell line SaOs-2

was obtained from European Collection of Cell Cultures
(ECACC, UK). The cells were cultured in Dulbecco’s

modified Eagle’s medium (DMEM; Gibco BRL, Life

Technologies, USA), supplemented with 10% of heat-
inactivated fetal bovine serum (FBS; Biochrom AG, Ger-

many), 1% of 100,000 U/ml penicillin-G, 100 lg/ml

streptomycin and 25 lg/ml amphotericin B (Sigma
Chemical Co, USA) solution, and 20 mM Hepes (Sigma

Chemical Co, USA) in a humidified atmosphere with 5%

CO2 at 37"C.
A cell suspension of SaOs-2 (3.3 9 104 cells/ml) was

prepared by trypsinisation (0.25% trypsin/EDTA solution,

Sigma, USA). The samples were placed in 24-well plates
and 1.5 ml of the cell suspension was seeded onto each

sample. The 24-well plates were incubated for 3 and

7 days. Culture medium was changed every 2 days. Tissue
culture polystyrene (TCPS) wells were used as a control.

After each pre-determined time of culture, the samples

(three samples per material per time point) were washed
with a 0.1 M phosphate buffered saline solution (PBS,

Sigma Chemical Co, USA), fixed with 2.5% gluteralde-

hyde (BDH, UK) solution in PBS for 30 min at 4"C,
washed again and kept in PBS at 4"C until being stained.

Methylene blue (0.4% water solution, 1 min) was used to

stain the viable cells and the samples were observed under
an Axioplan Imager Z1 (Zeiss, Germany).

3 Results & discussion

During the contact of material’s surface with biological
fluids, protein adsorption occurs almost instantaneously.

This proteins’ layer mediates key material-bioenvironment

interactions, further directing the acceptance or rejection of
the device. Physical adsorption of proteins occurs when the

change in Gibbs free energy of the system decreases during

the adsorption process. Therefore, several surface param-
eters such as charge, morphology and wettability can

influence this process. As mentioned before, surfaces with

intermediate to moderate wettability are better substrates
for protein mediated cell adhesion [31, 32, 36, 41]. On the

contrary, hydrophilic surfaces are repellent for protein

adsorption and therefore, they are often used as non-
adhesive surfaces (e.g., PEG modified surfaces). Contact

angle values of the studied materials before and after sur-

face modification are shown in Fig. 2.
SCA was found to be the most hydrophilic material with

a water contact angle of 56.4 ± 3.9". Relatively hydro-

phobic behaviour was observed for the other two blends,
SPCL and SEVA-C, with contact angles of 77.7 ± 7" and
84.3 ± 3.4", respectively. Previously reported results from

our group [42] showed that the most hydrophilic blend
(SCA) adsorbs less protein than the blend with the highest

water contact angle (SEVA-C) in unitary (fibronectin or

vitronectin) or complex proteins’ solution system. On the
other hand, a comparative in vitro study of starch-based

materials [43], using L929 mouse fibroblasts, showed that

the number of cells adherent to the SCA surface is higher
than the number of cells on SEVA-C. Different proteins’

conformations are probably the reason for the observed

discrepancy between the quantity of the adsorbed proteins
and the number of attached cells. Increasing of the surface

oxygen content/oxygen functionalities is expected to result
in more tightly binding of the proteins to the surface, hence

providing a conformation, which is favorable for cell

attachment and growth [44]. In fact, it has been shown [17]
that chemical surface oxidation of starch-based biomate-

rials influences positively cell adhesion.

Fig. 2 Water contact angles for original and modified SEVA-C, SCA
and SPCL. * P\ 0.05 indicates a statistically significant difference
between untreated materials and modified ones; ** Data do not
follow normal distribution
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The performed plasma treatment resulted in more

hydrophilic surfaces for SEVA-C and SPCL (Fig. 2).
Unexpectedly, a relatively sharp increase in the water

contact angle for SCA was observed. Ongoing crosslinking

processes or cleavage of the acetate side functionalities
from the cellulose chain during the plasma etching are two

possible reasons for the observed result. Different wetta-

bility was also measured for the studied blends after
UV-irradiation. A decrease in the water contact angle was

detected for SCA, while SPCL showed an opposite
behaviour. Interestingly, the UV treatment did not seem to

affect SEVA-C surface. In addition to surface composition,

other parameters such as surface roughness are known to
affect contact angle measurements (e.g., Cassie and Wen-

zel effects) [16, 45]. The surface morphology of the starch-

based polymers was observed by SEM before and after
treatment (Fig. 3).

SEM micrographs showed different surface texture after

the applied modifications. Although this effect was not
pronounced for the materials treated by UV-irradiation, it is

noteworthy for the samples modified by plasma. Etching

processes, typically ongoing during the treatments by
plasma, are the reason for the observed difference. Those

processes depend on the used power, which determines the

acceleration of the active species toward the material sur-
face, on the time during which the material is exposed to

this bombarding with active species, and of course on the

material itself. In order to get quantitative information for

the introduced morphological changes by the plasma
treatment, AFM analysis (Table 1) was also performed.

The highest value of mean roughness was found for the

plasma modified SCA (Fig. 4). Since SCA is the blend with
the richest oxygen-containing surface and generally, these

materials are more sensitive to degradation processes

[46, 47], this is an expected result. On the contrary, SPCL
(less oxygen) was almost unaffected.

Previous works [26–29, 48] have shown that surface
topography itself can be used as a factor, controlling cell

behaviour. The size, order and shape of the surface feature

are specific for each cell type. The introduced topographic
features to all the materials were at the nano-scale and

therefore comparable to those induced by adhesive proteins

such as fibronectin, laminin or collagen fibers. Recently
reported results have demonstrated that cells respond to the

roughness of the surface by greatly altering their gene

expression profile which in turn could affect cell signalling,
proliferation, cytoskeletal organization, and production of

extra cellular matrix proteins [29].

Surface chemistry is another factor that strongly influ-
ences materials biocompatibility. The effect of UV irradi-

ation and oxygen plasma modification on the surface

functionality of the studied blends was investigated by
FTIR-ATR and XPS. However, no differences were

observed in the FTIR-ATR spectra of treated and untreated

Fig. 3 SEM micrographs of the surface of untreated and modified starch-based biomaterials
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materials (data not shown). Since the penetration depth of

the infrared beam is in the range of 0.42–0.2 lm [49], it is
quite difficult to detect structural changes on the very top

surface layer. Therefore, surface analysis by XPS was used

as a complementary method. The penetration depth of the
X-ray beam used in this technique is about 5 nm [50]. The

surface elemental compositions of starch-based blends

before and after surface modification are listed in Table 2.
Once again, this analysis confirmed that plasma treatment

is a more powerful modification method for all studied
materials.

The XPS results are in very good agreement with the

measured contact angle values. An increase in oxygen
surface content was observed for both SEVA-C and SPCL

blends, which have also shown more hydrophilic behaviour

after plasma modification (Fig. 2). The observed changes
in the composition of the SCA surface after plasma treat-

ment were quite different from those detected for SEVA-C

and SPCL but also in agreement with the measured contact
angle. As mentioned before, polymers containing oxygen

functionalities are highly susceptible to plasma. The

experimentally determined C:O ratio for SCA was 1.83
which is much lower than the C:O ratios calculated for the

other two blends, 3.84 for SEVA-C and 3.06 for SPCL,
respectively. This relatively high oxygen content, mea-

sured for SCA, was reduced after plasma treatment. A

detailed analysis of the C1s core level spectra of this blend
(Fig. 5) showed a decrease in the intensity of both C=O and

C–O components compared to the C–C peak. Hence, the

previous speculation for the cleavage of the acetate side
functionalities was confirmed by this analysis. This same

effect was also observed by other authors [51] when cel-

lulose acetate blends were treated with CO2 plasma.
The effect of the UV irradiation on the surface com-

position was not as clear as the one observed after plasma

modification. Although SCA seemed to be unaffected in
terms of hydrophilicity after UV treatment, the XPS anal-

ysis showed an increase in its surface oxygen content.

Similar effect was observed for SPCL. These results

Table 1 Mean roughness for untreated and plasma modified starch
based polymer samples measured by AFM

Material Mean roughness nm

SEVA-C/untreated 5.65 ± 2.05

SEVA-C/O2 plasma 11.79 ± 3.29

SCA/untreated 7.43 ± 2.06

SCA/O2 plasma 16.49 ± 2.47

SPCL/untreated 3.43 ± 0.74

SPCL/O2 plasma 4.41 ± 1.69

Fig. 4 AFM surface section
analysis of SCA before (a) and
after (b) oxygen plasma
modification
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indicate that a mild photo-oxidation of the surface of those

materials occurs. During irradiation with the UV-excimer
light in air atmosphere, the chemical bonds, both in oxygen

and material, are split and radicals are created [52]. These

radicals interact with each other resulting in simultaneous
surface oxidation (new chemical groups ex. C–O or C=O)

and formation of conjugated double bonds. Moreover, it is

known that for polymers those processes are restricted to a
very shallow superficial layer of about 50 nm thick, even

after long deep-UV irradiation [21].
The opposite effect, a decrease in oxygen surface con-

tent, was measured for the SEVA-C blend. When radicals

are formed on the material surface, besides surface

oxidation, a recombination to carbon double bond [52] can

occur. The predominant presence of poly[ethylene-
co-(vinyl alcohol)] [16] on the surface of SEVA-C

might be the reason for the observed behaviour. Its linear

structure together with properly positioned hydroxyl
groups gives preferences to double bond formation.

How do these surface changes influence cell behaviour?

Do the applied treatments enhance the biocompatibility of
the studied biomaterials; are these methods suitable for the

sterilization of starch-based biomaterials? Figs. 6, 7, 8
show the influence of the used irradiations on cell behav-

iour. As can be seen in those figures, both methods had a

positive effect on the adhesion of osteoblasts-like cells.
The amount of cells adhered to the SEVA-C treated

surfaces (Fig. 6c, e) clearly increased compared to the

untreated ones (Fig. 6a) after 3 days of culture. This ten-
dency of increasing cell number was kept for longer culture

periods (up to 7 days) except for SEVA-C modified by

oxygen plasma (Fig. 6f). The flattened and in some way
oriented cells on the plasma treated SEVA-C seemed rather

promising after 3 days of culture (Fig. 6e). However, at

day 7 we have observed that cells do not proliferate and the
majority of them detached from the surface (Fig. 6f). It

should be noticed, that at this time the in vitro performance

of the material is affected not only by the surface of the
material but also by other parameters imposed by the pres-

ence of cells at the surface. Surface degradation of SEVA-C

and consequently protein rearrangement/desorption might
be another possible reason for the observed cell detachment.

Table 2 Calculated atomic concentration of the detected elements
and C:O ratio on untreated, UV-irradiated and plasma treated SEVA-
C, SCA and SPCL surfaces

Material/modification C (at.%) O (at.%) C:O ratio

SEVA-C/untreated 79.36 20.64 3.84

SEVA-C/UV-irradiated 80.22 19.78 4.05

SEVA-C/O2 plasma 71.92 28.08 2.56

SCA/untreated 64.70 35.30 1.83

SCA/UV-irradiated 63.47 36.53 1.74

SCA/O2 plasma 66.61 33.39 1.99

SPCL/untreated 75.35 24.65 3.06

SPCL/UV-irradiated 74.06 25.94 2.86

SPCL/O2 plasma 71.39 28.61 2.50

Fig. 5 C1s core level spectra
for untreated and modified SCA,
SEVA-C, and SPCL
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The analysis of the morphology of the osteoblastic-like

cells cultured on the studied surfaces revealed quite inter-
esting results. Cells cultured for 3 days on the UV irradiated

SEVA-C (Fig. 6c) did not present the characteristic mor-

phology for osteoblast-like cells and seemed to have pref-
erential adhesion points. However, after 7 days of culture

cells were forming a monolayer on the surface, confirming

their viability and ability to proliferate (Fig. 6d).
In the case of SCA and contrarily to the effect observed

for SEVA-C, the UV irradiation did not have a significant

influence on cell adhesion and cell morphology at day 3
(Fig. 7c). This result was expected since the surface char-

acterization showed that the water contact angle, the oxy-

gen content and the morphology were almost unaffected by
the applied treatment.

The treatment by plasma resulted in a considerable

increase in the number of cells adhered to the SCA surface
after 3 and 7 days of culture (Fig. 7e, f). In the natural

in vivo environment, cells contact with textured not

smooth interfaces (extracellular matrix). Hence, the intro-
duced nano-roughness by this treatment could be the rea-

son for the observed result. On the other hand, the higher

surface area could also affect positively the cell adhesion
by increasing the quantity of the adsorbed proteins [53].

A direct relation between surface chemistry and the

adhesion behaviour was demonstrated for SPCL materials
(Fig. 8). The UV irradiation had an effect similar to the one

observed for SEVA-C. A significant number of cells

adherent to the modified surface was detected after 3 days
of culture (Fig. 8c). Similarly to SEVA-C, the adhered

Fig. 6 Optical micrographs of osteoblast-like cells stained with
methylene blue and cultured on untreated (a, b), UV-irradiated (c, d)
and O2 plasma treated (e, f) SEVA-C for 3 (a, c, e) and 7 (b, d, f)

days. Squares on the upper corner represent an area of the micrograph
at higher magnification
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cells did not present the typical morphology of osteoblasts

and seemed to have preferential adhesion points. However,
after 7 days of culture, cells were elongated and their

proliferation resulted in a formation of a cell layer covering

the entire irradiated surface (Fig. 8d).
Since the surface morphology of the treated and

untreated SPCL samples is comparable (Fig. 3), the

observed difference can be related to the change of the
surface chemistry. An increase in the surface oxygen

content was measured (Table 2) after UV-irradiation of the

samples, thus it seems this is the main factor influencing
cell adhesion to this starch blend.

These results are consistent with other works [54, 55],

correlating the adhesion process to the surface chemical
composition rather than to the changes in surface wetta-

bility. Moreover, this assumption was confirmed by the

results for plasma modified SPCL. According to the XPS

analysis, surface oxygen content was higher after applying
this modification method (C:O ratio of 2.5 compared to

2.86 for UV-irradiated SPCL). On the other hand, cells

completely covered modified SPCL samples only after
3 days of culture (Fig. 8e). These cells continued to pro-

liferate and after 7 days of culture, a dense monolayer of

cells was formed (Fig. 8f).

4 Conclusions

The effect of UV-irradiation and oxygen plasma modifi-

cations on the physico-chemical surface properties of dif-
ferent starch-based biomaterials was studied. It was found

that plasma surface modification is more powerful method

Fig. 7 Optical micrographs of osteoblast-like cells stained with
methylene blue and cultured on untreated (a, b), UV-irradiated (c, d)
and O2 plasma treated (e, f) SCA for 3 (a, c, e) and 7 (b, d, f) days.

Squares on the upper corner represent an area of the micrograph at
higher magnification
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resulting in different surface morphology, wettability and

chemical composition. However, the effect of both used
methods depends of the initial surface oxygen content.

SCA, which is the richest in oxygen blend, was the most

affected material in terms of both surface morphology and
surface chemistry.

The effect of the modified surface properties on the

adhesion and proliferation of osteoblastic cells was further
investigated. Higher number of cells adherent to the

modified surfaces was observed for short culture periods. A

direct relationship between the amplitude of each surface
property and cells behaviour is not possible to withdraw.

Considering each studied surface parameter: the roughness

induced by the surface treatments is at the biomimicking
nano-scale and therefore stimulate the cell behaviour. It

was found that neither very hydrophilic nor very

hydrophobic surfaces are desirable. In fact, changing the

wettability of SCA from a highly to a moderate hydrophilic
character favoured cell adhesion.

Sterilization of biomedical materials and devices is

the final, crucial step to the application of these mate-
rials. Failing at this stage means unsuccessful end of a

long process (very often years!!) of a biomaterial’s

creation. Oxygen plasma treatment and UV irradiation,
applied on different starch-based blends, altered their

surface properties in a way that do significantly improve

their biocompatibility in terms of cell adhesion. The
possibility to apply these techniques to three-dimensional

devices with complex shape combined with their cost-

effectiveness make the reported methods indispensable
in further sterilization procedures of biodegradable

biodevices.

Fig. 8 Optical micrographs of osteoblast-like cells stained with
methylene blue and cultured on untreated (a, b), UV-irradiated (c, d)
and O2 plasma treated (e, f) SPCL for 3 (a, c, e) and 7 (b, d, f) days.

Squares on the upper corner represent an area of the micrograph at
higher magnification
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