229 research outputs found

    Measurement of jet fragmentation in Pb+Pb and pp collisions at √s NN =5.02 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of jet fragmentation functions in 0.49 nb −1 of Pb+Pb collisions and 25 pb −1 of pp collisions at √ sNN =5.02 TeV collected in 2015 with the ATLAS detector at the LHC. These measurements provide insight into the jet quenching process in the quark-gluon plasma created in the aftermath of ultra-relativistic collisions between two nuclei. The modifications to the jet fragmentation functions are quantified by dividing the measurements in Pb+Pb collisions by baseline measurements in pp collisions. This ratio is studied as a function of the transverse momentum of the jet, the jet rapidity, and the centrality of the collision. In both collision systems, the jet fragmentation functions are measured for jets with transverse momentum between 126 GeV and 398 GeV and with an absolute value of jet rapidity less than 2.1. An enhancement of particles carrying a small fraction of the jet momentum is observed, which increases with centrality and with increasing jet transverse momentum. Yields of particles carrying a very large fraction of the jet momentum are also observed to be enhanced. Between these two enhancements of the fragmentation functions a suppression of particles carrying an intermediate fraction of the jet momentum is observed in Pb+Pb collisions. A small dependence of the modifications on jet rapidity is observed

    Search for Higgs bosons produced via vector-boson fusion and decaying into bottom quark pairs in √s =13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the bb ¯ decay of the Standard Model Higgs boson produced through vector-boson fusion is presented. Three mutually exclusive channels are considered: two all-hadronic channels and a photon-associated channel. Results are reported from the analysis of up to 30.6 fb −1 of pp data at s √ =13 TeV collected with the ATLAS detector at the LHC. The measured signal strength relative to the Standard Model prediction from the combined analysis is 2.5 +1.4 −1.3 for inclusive Higgs boson production and 3.0 +1.7 −1.6 for vector-boson fusion production only

    Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton–proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    This Letter presents a search for new light resonances decaying to pairs of quarks and produced in association with a high-pT photon or jet. The dataset consists of proton–proton collisions with an integrated luminosity of 36.1 fb−1at a centre-of-mass energy of √s=13TeV recorded by the ATLAS detector at the Large Hadron Collider. Resonance candidates are identified as massive large-radius jets with substructure consistent with a particle decaying into a quark pair. The mass spectrum of the candidates is examined for local excesses above background. No evidence of a new resonance is observed in the data, which are used to exclude the production of a lepto-phobic axial-vector Z boson

    Search for vector-boson resonances decaying to a top quark and bottom quark in the lepton plus jets final state in pp collisions at √s=13TeV with the ATLAS detector

    Get PDF
    A search for new charged massive gauge bosons, W_, is performed with the ATLAS detector at the LHC. Data were collected in proton–proton collisions at a center-of-mass energy of √s=13TeVand correspond to an integrated luminosity of 36.1fb−1. This analysis searches for W_bosons in the W_→t¯bdecay channel in final states with an electron or muon plus jets. The search covers resonance masses between 0.5 and 5.0TeVand considers right-handed W_bosons. No significant deviation from the Standard Model (SM) expectation is observed and upper limits are set on the W_→t¯bcross section times branching ratio and the W_boson effective couplings as a function of the W_boson mass. For right-handed W_bosons with coupling to the SM particles equal to the SM weak coupling constant, masses below 3.15TeVare excluded at the 95% confidence level. This search is also combined with a previously published ATLAS result for W_→t¯bin the fully hadronic final state. Using the combined searches, right-handed W_bosons with masses below 3.25TeVare excluded at the 95% confidence level

    Search for Higgs boson decays into a pair of light bosons in the bbμμ final state in pp collision at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for decays of the Higgs boson into a pair of new spin-zero particles, H→aa, where the a-bosons decay into a b-quark pair and a muon pair, is presented. The search uses 36.1fb−1of proton–proton collision data at √s=13 TeV recorded by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the Standard Model prediction is observed. Upper limits at 95% confidence level are placed on the branching ratio (σH/σSM) ×B(H→aa →bbμμ), ranging from 1.2 ×10−4to 8.4 ×10−4in the a-boson mass range of 20–60GeV. Model-independent limits are set on the visible production cross-section times the branching ratio to the bbμμ final state for new physics, σvis(X) ×B(X→bbμμ), ranging from 0.1fb to 0.73fb for mμμ between 18 and 62GeV

    A measurement of the soft-drop jet mass in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Jet substructure observables have significantly extended the search program for physics beyond the Standard Model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross-section is measured as a function of log 10 ρ 2, where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb −1 of √s =13 TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations

    Search for heavy resonances decaying to a photon and a hadronically decaying Z/W/H boson in pp collisions at √s =13  TeV with the ATLAS detector

    Get PDF
    Many extensions of the Standard Model predict new resonances decaying to a Z, W, or Higgs boson and a photon. This paper presents a search for such resonances produced in pp collisions at √s =13  TeV using a data set with an integrated luminosity of 36.1  fb−1 collected by the ATLAS detector at the LHC. The Z/W/H bosons are identified through their decays to hadrons. The data are found to be consistent with the Standard Model expectation in the entire investigated mass range. Upper limits are set on the production cross section times branching fraction for resonance decays to Z/W+γ in the mass range from 1.0 to 6.8 TeV and for the first time into H+γ in the mass range from 1.0 to 3.0 TeV

    Measurement of photon–jet transverse momentum correlations in 5.02TeV Pb+Pb and pp collisions with ATLAS

    Get PDF
    For abstract see published article

    Search for new phenomena in high-mass diphoton final states using 37 fb−1 of proton–proton collisions collected at √s = 13 TeV with the ATLAS detector

    Get PDF
    Searches for new phenomena in high-mass diphoton final states with the ATLAS experiment at the LHC are presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 36.7 fb−1 at a centre-of-mass energy √s = 13 TeV recorded in 2015 and 2016. Searches are performed for resonances with spin 0, as predicted by theories with an extended Higgs sector, and for resonances with spin 2, using a warped extra-dimension model as a benchmark model, as well as for non-resonant signals, assuming a large extra-dimension scenario. No significant deviation from the Standard Model is observed. Upper limits are placed on the production cross section times branching ratio to two photons as a function of the resonance mass. In addition, lower limits are set on the ultraviolet cutoff scale in the large extra-dimensions model

    Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at √sNN=5.02 TeV with the ATLAS detector

    Get PDF
    Measurements of the yield and nuclear modification factor, RAA, for inclusive jet production are performed using 0.49nb−1of Pb+Pb data at √sNN=5.02TeVand 25pb−1of pp data at √s=5.02TeVwith the ATLAS detector at the LHC. Jets are reconstructed with the anti-kt algorithm with radius parameter R =0.4and are measured over the transverse momentum range of 40–1000GeVin six rapidity intervals covering |y| <2.8. The magnitude of RAA increases with increasing jet transverse momentum, reaching a value of approximately0.6 at 1TeVin the most central collisions. The magnitude of RAA also increases towards peripheral collisions. The value of RAA is independent of rapidity at low jet transverse momenta, but it is observed to decrease with increasing rapidity at high transverse momenta
    corecore