58 research outputs found

    Computer‐assisted Curie scoring for metaiodobenzylguanidine (MIBG) scans in patients with neuroblastoma

    Full text link
    BackgroundRadiolabeled metaiodobenzylguanidine (MIBG) is sensitive and specific for detecting neuroblastoma. The extent of MIBG‐avid disease is assessed using Curie scores. Although Curie scoring is prognostic in patients with high‐risk neuroblastoma, there is no standardized method to assess the response of specific sites of disease over time. The goal of this study was to develop approaches for Curie scoring to facilitate the calculation of scores and comparison of specific sites on serial scans.ProcedureWe designed three semiautomated methods for determining Curie scores, each with increasing degrees of computer assistance. Method A was based on visual assessment and tallying of MIBG‐avid lesions. For method B, scores were tabulated from a schematic that associated anatomic regions to MIBG‐positive lesions. For method C, an anatomic mesh was used to mark MIBG‐positive lesions with automatic assignment and tallying of scores. Five imaging physicians experienced in MIBG interpretation scored 38 scans using each method, and the feasibility and utility of the methods were assessed using surveys.ResultsThere was good reliability between methods and observers. The user‐interface methods required 57 to 110 seconds longer than the visual method. Imaging physicians indicated that it was useful that methods B and C enabled tracking of lesions. Imaging physicians preferred method B to method C because of its efficiency.ConclusionsWe demonstrate the feasibility of semiautomated approaches for Curie score calculation. Although more time was needed for strategies B and C, the ability to track and document individual MIBG‐positive lesions over time is a strength of these methods.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146464/1/pbc27417.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146464/2/pbc27417_am.pd

    Dijet production in √s = 7 TeV pp collisions with large rapidity gaps at the ATLAS experiment

    Get PDF
    A 6.8 nb−¹ sample of pp collision data collected under low-luminosity conditions at √s = 7 TeV by the ATLAS detector at the Large Hadron Collider is used to study diffractive dijet production. Events containing at least two jets with pT > 20 GeV are selected and analysed in terms of variables which discriminate between diffractive and non-diffractive processes. Cross sections are measured differentially in ΔηF, the size of the observable forward region of pseudorapidity which is devoid of hadronic activity, and in an estimator, ξ˜, of the fractional momentum loss of the proton assuming single diffractive dissociation (pp → p X). Model comparisons indicate a dominant non-diffractive contribution up to moderately large ηF and small ξ˜, with a diffractive contribution which is significant at the highest ΔηF and the lowest ξ˜. The rapidity-gap survival probability is estimated from comparisons of the data in this latter region with predictions based on diffractive parton distribution functions

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Acute Complications After High-Dose Chemotherapy and Stem-Cell Rescue in Pediatric Patients With High-Risk Neuroblastoma Treated in Countries With Different Resources

    No full text
    Purpose: High-dose chemotherapy with autologous stem-cell rescue (SCR) is a key component of high-risk neuroblastoma (HRNB) therapy. Carboplatin, etoposide, and melphalan (CEM) or busulfan and melphalan (Bu/Mel) are the most evaluated, effective high-dose chemotherapy for HRNB on the basis of results from major cooperative group studies. Toxicity profiles vary between these regimens, and practice variation exists regarding the preferred high-dose therapy (HDT). We sought to evaluate the safety of HDT and autologous SCR for HRNB in a resource-limited country (Egypt) compared with the resource-rich United States. Patients and Methods: We performed a retrospective comparative review of single CEM-based HDT/SCR outcomes through day 100 for HRNB at the Fred Hutchinson Cancer Research Center (FH) in the United States (2005 to 2015) versus Bu/Mel-based HDT at El-Sheikh Zayed Specialized Hospital (SZ) in Egypt (2009 to 2015). Results: Forty-four patients at FH and 77 patients at SZ were reviewed. Pretransplant hepatic comorbidities were significantly higher at SZ (29 of 77 v nine of 44; P = .05), with 19 of 77 patients at SZ having hepatitis infection. Engraftment was delayed after SZ-Bu/Mel therapy compared with FH-CEM therapy for neutrophils (median 12 days v 10 days, respectively; P < .001) and platelets (median 20 days v 18 days, respectively; P < .001). Sinusoidal obstruction syndrome occurred later, after SZ-Bu/Mel therapy (median 19 days v 7 days; P = .033), and four of eight cases were fatal (six of eight patients had underlying hepatitis infection), whereas three of three cases after FH-CEM therapy were moderately severe. Resource utilization associated with the number of days with fever, antibiotic use, and the number of transfusions administered was significantly higher after FH-CEM therapy than after SZ-Bu/Mel therapy. Conclusion: Use of autologous stem-cell transplantation is feasible in the context of a resource-limited country

    A combined bioinformatics, experimental and clinical approach to identify novel cardiac‐specific heart failure biomarkers: is Dickkopf

    No full text
    Aims: Cardiac specificity provides an advantage in correlating heart failure (HF) biomarker plasma levels with indices of cardiac function and remodelling, as shown for natriuretic peptides. Using bioinformatics, we explored the cardiac specificity of secreted proteins and investigated in more detail the relationship of Dickkopf-3 (DKK3) gene expression and DKK3 plasma concentrations with cardiac function and remodelling in (pre)clinical studies. Methods and results: The cardiac specificity of secreted proteins was determined using RNAseq data for a large panel of organs and tissues. This showed that natriuretic peptides (NPPA and NPPB) are highly cardiac-specific (>99%), whereas other HF biomarkers, including galectin-3 (Gal-3, LGALS3) and growth differentiation factor-15 (GDF-15), lack cardiac specificity (<4%). DKK3 was cardiac-enriched (44%), warranting further investigation. In three different HF mouse models, cardiac Dkk3 expression was altered, but DKK3 plasma concentrations were not. In humans, DKK3 plasma concentrations were higher in HF patients (n = 2090) in comparison with age- and sex-matched controls without HF (n = 240) (46.4 ng/mL vs. 36.3 ng/mL; P < 0.001). Multivariate regression analysis revealed that DKK3 was strongly associated with HF risk factors and comorbidities, including age, kidney function and atrial fibrillation. After correction for existing prediction models, DKK3 did not independently predict HF outcome [all-cause mortality/HF hospitalization, hazard ratio 1.13 (0.79–1.61) per DKK3 doubling; P = 0.503]. Conclusions: Of actively secreted HF biomarkers, only natriuretic peptides showed high cardiac specificity. Despite a cardiac specificity of 44%, secreted DKK3 had limited additional diagnostic and prognostic value
    corecore