672 research outputs found
Walks4work: Rationale and study design to investigate walking at lunchtime in the workplace setting
Background: Following recruitment of a private sector company, an 8week lunchtime walking intervention was implemented to examine the effect of the intervention on modifiable cardiovascular disease risk factors, and further to see if walking environment had any further effect on the cardiovascular disease risk factors. Methods. For phase 1 of the study participants were divided into three groups, two lunchtime walking intervention groups to walk around either an urban or natural environment twice a week during their lunch break over an 8week period. The third group was a waiting-list control who would be invited to join the walking groups after phase 1. In phase 2 all participants were encouraged to walk during their lunch break on self-selecting routes. Health checks were completed at baseline, end of phase 1 and end of phase 2 in order to measure the impact of the intervention on cardiovascular disease risk. The primary outcome variables of heart rate and heart rate variability were measured to assess autonomic function associated with cardiovascular disease. Secondary outcome variables (Body mass index, blood pressure, fitness, autonomic response to a stressor) related to cardiovascular disease were also measured. The efficacy of the intervention in increasing physical activity was objectively monitored throughout the 8-weeks using an accelerometer device. Discussion. The results of this study will help in developing interventions with low researcher input with high participant output that may be implemented in the workplace. If effective, this study will highlight the contribution that natural environments can make in the reduction of modifiable cardiovascular disease risk factors within the workplace. © 2012 Brown et al.; licensee BioMed Central Ltd
RNA secondary structure prediction from multi-aligned sequences
It has been well accepted that the RNA secondary structures of most
functional non-coding RNAs (ncRNAs) are closely related to their functions and
are conserved during evolution. Hence, prediction of conserved secondary
structures from evolutionarily related sequences is one important task in RNA
bioinformatics; the methods are useful not only to further functional analyses
of ncRNAs but also to improve the accuracy of secondary structure predictions
and to find novel functional RNAs from the genome. In this review, I focus on
common secondary structure prediction from a given aligned RNA sequence, in
which one secondary structure whose length is equal to that of the input
alignment is predicted. I systematically review and classify existing tools and
algorithms for the problem, by utilizing the information employed in the tools
and by adopting a unified viewpoint based on maximum expected gain (MEG)
estimators. I believe that this classification will allow a deeper
understanding of each tool and provide users with useful information for
selecting tools for common secondary structure predictions.Comment: A preprint of an invited review manuscript that will be published in
a chapter of the book `Methods in Molecular Biology'. Note that this version
of the manuscript may differ from the published versio
Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene
We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90-100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene.ope
Recommended from our members
An overview on the inconsistencies of approach in regulating the capital position of banks: Will the United Kingdom step out of line with Europe?
After the collapse of a number of banking institutions and bailouts of banks by governments, regulators have taken a different attitude and now appear keen to take regulation seriously when it comes to ensuring that banks have adequate capital and sufficient liquidity. Not only that, but in the United Kingdom, the Independent Commission on Banking Reform has made proposals with regard to the capital position of banks. This article, which is an overview, will look at matters from a UK perspective and at the proposals for reform. This article, after its introduction and summary, will look at a number of areas: first, the reforms made by Basel III; second, the regulation of Systemically Important Financial Institutions (Sifis) and the proposals for dealing with these; third, some matters in relation to lending that relate to capital and liquidity generally; fourth, increased stress testing of banks; fifth, derivatives and risk taking and the new proposed structure of regulation in the United Kingdom; sixth, the war of spin between regulators and banks; seventh, Shadow Banking; and eighth, The Independent Commission on Banking Reform and its proposals for reform. It will also be a theme that the various proposals lack consistency and that this could lead to regulatory arbitrage. It is already clear that there are inconsistencies between the various regulatory organisations, with proposals in the United Kingdom indicating that banks will be required to keep much higher levels of capital than those proposed by Basel and the European Community. The views of those who have pointed out inconsistencies between the United Kingdom and Basel/Europe have been highlighted
Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment
Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at 90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L−1) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment.This work was supported from baseline funds to CRV and under the Center Competitive Funding
(CCF) Program FCC/1/1973-18-01 by the King Abdullah University of Science and Technology (KAUST)
Development and Validation of Apolipoprotein AI-Associated Lipoprotein Proteome Panel for the Prediction of Cholesterol Efflux Capacity and Coronary Artery Disease
BACKGROUND: Cholesterol efflux capacity (CEC) is a measure of HDL function that, in cell-based studies, has demonstrated an inverse association with cardiovascular disease. The cell-based measure of CEC is complex and low-throughput. We hypothesized that assessment of the lipoprotein proteome would allow for precise, high-throughput CEC prediction. METHODS: After isolating lipoprotein particles from serum, we used LC-MS/MS to quantify 21 lipoprotein-associated proteins. A bioinformatic pipeline was used to identify proteins with univariate correlation to cell-based CEC measurements and generate a multivariate algorithm for CEC prediction (pCE). Using logistic regression, protein coefficients in the pCE model were reweighted to yield a new algorithm predicting coronary artery disease (pCAD). RESULTS: Discovery using targeted LC-MS/MS analysis of 105 training and test samples yielded a pCE model comprising 5 proteins (Spearman r = 0.86). Evaluation of pCE in a case-control study of 231 specimens from healthy individuals and patients with coronary artery disease revealed lower pCE in cases (P = 0.03). Derived within this same study, the pCAD model significantly improved classification (P < 0.0001). Following analytical validation of the multiplexed proteomic method, we conducted a case-control study of myocardial infarction in 137 postmenopausal women that confirmed significant separation of specimen cohorts in both the pCE (P = 0.015) and pCAD (P = 0.001) models. CONCLUSIONS: Development of a proteomic pCE provides a reproducible high-throughput alternative to traditional cell-based CEC assays. The pCAD model improves stratification of case and control cohorts and, with further studies to establish clinical validity, presents a new opportunity for the assessment of cardiovascular health
Adult Cardiac Progenitor Cell Aggregates Exhibit Survival Benefit Both In Vitro and In Vivo
Background: A major hurdle in the use of exogenous stems cells for therapeutic regeneration of injured myocardium remains the poor survival of implanted cells. To date, the delivery of stem cells into myocardium has largely focused on implantation of cell suspensions. Methodology and Principal Findings: We hypothesize that delivering progenitor cells in an aggregate form would serve to mimic the endogenous state with proper cell-cell contact, and may aid the survival of implanted cells. Microwell methodologies allow for the culture of homogenous 3D cell aggregates, thereby allowing cell-cell contact. In this study, we find that the culture of cardiac progenitor cells in a 3D cell aggregate augments cell survival and protects against cellular toxins and stressors, including hydrogen peroxide and anoxia/reoxygenation induced cell death. Moreover, using a murine model of cardiac ischemia-reperfusion injury, we find that delivery of cardiac progenitor cells in the form of 3D aggregates improved in vivo survival of implanted cells. Conclusion: Collectively, our data support the notion that growth in 3D cellular systems and maintenance of cell-cell contact improves exogenous cell survival following delivery into myocardium. These approaches may serve as a strategy to improve cardiovascular cell-based therapies
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Effect of human leukocyte antigen heterozygosity on infectious disease outcome: The need for allele-specific measures
BACKGROUND: Doherty and Zinkernagel, who discovered that antigen presentation is restricted by the major histocompatibility complex (MHC, called HLA in humans), hypothesized that individuals heterozygous at particular MHC loci might be more resistant to particular infectious diseases than the corresponding homozygotes because heterozygotes could present a wider repertoire of antigens. The superiority of heterozygotes over either corresponding homozygote, which we term allele-specific overdominance, is of direct biological interest for understanding the mechanisms of immune response; it is also a leading explanation for the observation that MHC loci are extremely polymorphic and that these polymorphisms have been maintained through extremely long evolutionary periods. Recent studies have shown that in particular viral infections, heterozygosity at HLA loci was associated with a favorable disease outcome, and such findings have been interpreted as supporting the allele-specific overdominance hypothesis in humans. METHODS: An algebraic model is used to define the expected population-wide findings of an epidemiologic study of HLA heterozygosity and disease outcome as a function of allele-specific effects and population genetic parameters of the study population. RESULTS: We show that overrepresentation of HLA heterozygotes among individuals with favorable disease outcomes (which we term population heterozygote advantage) need not indicate allele-specific overdominance. On the contrary, partly due to a form of confounding by allele frequencies, population heterozygote advantage can occur under a very wide range of assumptions about the relationship between homozygote risk and heterozygote risk. In certain extreme cases, population heterozygote advantage can occur even when every heterozygote is at greater risk of being a case than either corresponding homozygote. CONCLUSION: To demonstrate allele-specific overdominance for specific infections in human populations, improved analytic tools and/or larger studies (or studies in populations with limited HLA diversity) are necessary
Gene expression microarray analysis of early oxygen-induced retinopathy in the rat
Different inbred strains of rat differ in their susceptibility to oxygen-induced retinopathy (OIR), an animal model of human retinopathy of prematurity. We examined gene expression in Sprague–Dawley (susceptible) and Fischer 344 (resistant) neonatal rats after 3 days exposure to cyclic hyperoxia or room air, using Affymetrix rat Genearrays. False discovery rate analysis was used to identify differentially regulated genes. Such genes were then ranked by fold change and submitted to the online database, DAVID. The Sprague–Dawley list returned the term “response to hypoxia,” absent from the Fischer 344 output. Manual analysis indicated that many genes known to be upregulated by hypoxia-inducible factor-1α were downregulated by cyclic hyperoxia. Quantitative real-time RT-PCR analysis of Egln3, Bnip3, Slc16a3, and Hk2 confirmed the microarray results. We conclude that combined methodologies are required for adequate dissection of the pathophysiology of strain susceptibility to OIR in the rat
- …
