52 research outputs found

    Moringa oleifera: Resource management and multiuse life tree

    Get PDF
    Moringa oleifera Lamarck (Moringaceae family) is a plant native from the Western and sub-Himalayan parts of Northwest India, Pakistan and Afghanistan. This species is widely cultivated across Africa, South-East Asia, Arabia, South America and Caribbean Islands. M. oleifera culture is also being distributed in the Semi-Arid Northeast of Brazil. It is a multiuse life tree with great environmental economic importance in industrial and medical areas. This review reports different purposes of M. oleifera including sustaining environmental resources, soil protection and shelter for animals. This plant requires not much care and distinct parts have bioactive compounds. Moringa tissues used in human and animal diets, also withdraw pollutants from water. The seeds with coagulant properties used in water treatment for human consumption, remove waste products like surfactants, heavy metals and pesticides. The oil extracted from seeds is used in cosmetic production and as biodiesel. M. oleifera tissues also contain proteins with different biological activities, including lectins, chitin-binding proteins, trypsin inhibitors, and proteases. The lectins are reported to act as insecticidal agents against Aedes aegypti (vector of dengue, chikungunya and yellow fevers) and Anagasta kuehniella (pest of stored products) and also showed water coagulant, antibacterial and blood anticoagulant activities. The presence of trypsin inhibitors has been reported in M. oleifera leaves and flowers. The inhibitor from flowers is toxic to larvae of A. aegypti. The flowers also contain caseinolytic proteases that are able to promote clotting of milk. In this sense, M. oleifera is a promising tree from a biotechnological point of view, since it has shown a great variety of uses and it is a source of several compounds with a broad range of biological activities.Conselho Nacional de Desenvolvimento Científico e Tecnológico for fellowship (LCBBC) and to the Foundation for Science and Technology, POPH/FSE (AFSS

    The Silences Framework: A Method for researching sensitive themes and marginalized health perspectives (English version)

    Get PDF
    Objective: To describe the experience of applying of The Silences Framework to underpin health research investigating Tuberculosis/HIV/AIDS coinfection . Method: The Silences Framework originally developed following a study exploring the decisions and silences surrounding black Caribbean men living in England, discussing the themes 'sexual health' and 'ethnicity'. Following this study a conceptual a theory for research on sensitive issues and health care of marginalized populations was developed called 'Screaming Silences' which forms the foundation of The Silences Framework. Screaming Silences define research areas and experiences that are poorly studied, little understood or silenced. Results: The Silences Framework supports researchers in revealing "silences" in the subjects they study - as such results may reflect how beliefs, values, and experiences of some groups influence their health. This framework provides the application of four complementary stages: working the silences, hearing silences, voicing silences and working with the silences. The analysis occurs cyclically and can be repeated as long as the silences inherent in a study are not revealed. Conclusion: this article presents The Silences Framework and the application of the notion of "sounds of silence", mapping an antiessentialist theoretical framework for its use in sensitive research in health and nursing areas, being a reference for other researchers in studies involving marginalized populations. KEYWORDS: Inequalities in health. Methods. Nursing. Coinfection. Research. Tuberculosis. Acquired immunodeficiency syndrome

    Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains

    Get PDF
    Ruiz JC, D'Afonseca V, Silva A, et al. Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains. PLoS ONE. 2011;6(4): e18551.Background: Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. Methodology and Findings: We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. Conclusions: These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks
    corecore